OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11492–11505

Fluorescent polymer coated capillaries as optofluidic refractometric sensors

Kristopher J. Rowland, Alexandre François, Peter Hoffmann, and Tanya M. Monro  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11492-11505 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1786 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A capillary microresonator platform for refractometric sensing is demonstrated by coating the interior of thick-walled silica capillaries with a sub-wavelength layer of high refractive index, dye-doped polymer. No intermediate processing, such as etching or tapering, of the capillary is required. Side illumination and detection of the polymer layer reveals a fluorescence spectrum that is periodically modulated by whispering gallery mode resonances within the layer. Using a Fourier technique to calculate the spectral resonance shifts, the fabricated capillary resonators exhibited refractometric sensitivities up to approximately 30 nm/RIU upon flowing aqueous glucose through them. These sensors could be readily integrated with existing biological and chemical separation platforms such as capillary electrophoresis and gas chromatography where such thick walled capillaries are routinely used with polymer coatings. A review of the modelling required to calculate whispering gallery eigenmodes of such inverted cylindrical resonators is also presented.

© 2013 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(140.3948) Lasers and laser optics : Microcavity devices
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: February 26, 2013
Revised Manuscript: April 7, 2013
Manuscript Accepted: April 22, 2013
Published: May 3, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Kristopher J. Rowland, Alexandre François, Peter Hoffmann, and Tanya M. Monro, "Fluorescent polymer coated capillaries as optofluidic refractometric sensors," Opt. Express 21, 11492-11505 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett.31,1319–1312 (2006). [CrossRef] [PubMed]
  2. H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79,930–937 (2007). [CrossRef] [PubMed]
  3. S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S. Ja, “On-column micro gas chromatography detection with capillary-based optical ring resonators,” Anal. Chem.80,2232–2238 (2008). [CrossRef] [PubMed]
  4. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nature Phot.5,591–597 (2011). [CrossRef]
  5. H. Zhu, I .M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express15,9139–9146 (2007). [CrossRef] [PubMed]
  6. G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem.133,105–112 (2008). [CrossRef]
  7. L. Ren, X. Wu, M. Li, X. Zhang, L. Liu, and L. Xu, “Ultrasensitive label-free coupled optofluidic ring laser sensor,” Opt. Lett.37,3873–3875 (2012). [CrossRef] [PubMed]
  8. G. Kemp, “Capillary electrophoresis: a versatile family of analytical techniques,” Biotech. Appl. Biochem., 27,9–17 (1998). [CrossRef]
  9. G . Vicente and L. A. Colon, “Separation of bioconjugated quantum dots using capillary electrophoresis,” Anal. Chem.80,1988–1994 (2008). [CrossRef] [PubMed]
  10. J. Horvath and V. Dolník, “Polymer wall coatings for capillary electrophoresis,” Electrophoresis22,644–655 (2001). [CrossRef] [PubMed]
  11. Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D39,5133 (2006). [CrossRef]
  12. C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express19,21540–21551 (2011). [CrossRef] [PubMed]
  13. A. J. Campillo, J. D. Eversole, and H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett.67,437–440 (1991). [CrossRef] [PubMed]
  14. A. François and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett.94,141107 (2009). [CrossRef]
  15. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovic, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434,876–879 (2005). [CrossRef] [PubMed]
  16. N. Yamasaki, K. Masuyama, A. Fujii, and M. Ozaki, “Spectral modulation of microcapillary laser based on emissive π-conjugated polymers by poor solvent injection,” Thin Solid Films519,995–997 (2010). [CrossRef]
  17. J. R. Rodrguez, J. G. C. Veinot, P. Bianucci, and A. Meldrum, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett.92,131119-1–3 (2008).
  18. L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quant. Electron.36,259–269 (2004). [CrossRef]
  19. E. Franchimon, Modelling Circular Optical Microresonators Using Whispering Gallery Modes, Thesis (2010).
  20. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano.9,149–158 (2010). [CrossRef]
  21. K. R. Hiremath, M. Hammer, S. Stoffer, L. Prkna, and Čtyroký, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quant. Electron.37,37–61 (2005). [CrossRef]
  22. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  23. D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” Optoelec., IEE Proc. J.140,177–188 (1993). [CrossRef]
  24. M. Sumetsky, “Mode localization and the Q-factor of a cylindrical microresonator,” Opt. Lett.35,2385–2387 (2010). [CrossRef] [PubMed]
  25. J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express20,8284–8295 (2012). [CrossRef] [PubMed]
  26. T. Beck, S. Schloer, T. Grossmann, T. Mappes, and H. Kalt, “Flexible coupling of high-Q goblet resonators for formation of tunable photonic molecules,” Opt. Express20,22012–22017 (2012). [CrossRef] [PubMed]
  27. M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllyl, “Highly sensitive biosensor based on UV imprinted layered polymericinorganic composite waveguides,” Opt. Express20,20309–20317 (2012). [CrossRef] [PubMed]
  28. T. Kobayashi and N. Byrne, “Plastic evanescent microlaser,” Appl. Phys. Lett.99,153307-1–3 (2011). [CrossRef]
  29. J. Huang, V. Bekiari, P. Lianos, and S. Couris, “Study of poly(methyl methacrylate) thin films doped with laser dyes,” J Lumin.81,285–291 (1999). [CrossRef]
  30. S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of Extremely Porous Polymer Fibers,” IEEE Photon. J.1,286–292 (2009). [CrossRef]
  31. D. R. Lide, (ed.), CRC Handbook of Chemistry and Physics, 84th edition Chap. 8–66 (CRC Press, 2003).
  32. J. Wang and K. Y. Wong, “Polarization characteristics of a light-emitting polymer microring laser,” Appl. Phys. B87,685–691 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited