OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11546–11553

Stable control of 10 dB two-mode squeezed vacuum states of light

Tobias Eberle, Vitus Händchen, and Roman Schnabel  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11546-11553 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1140 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Continuous variable entanglement is a fundamental resource for many quantum information tasks. Important protocols like superactivation of zero-capacity channels and finite-size quantum cryptography that provides security against most general attacks, require about 10 dB two-mode squeezing. Additionally, stable phase control mechanisms are necessary but are difficult to achieve because the total amount of optical loss to the entangled beams needs to be small. Here, we experimentally demonstrate a control scheme for two-mode squeezed vacuum states at the telecommunication wavelength of 1550 nm. Our states exhibited an Einstein-Podolsky-Rosen covariance product of 0.0309 ± 0.0002, where 1 is the critical value, and a Duan inseparability value of 0.360±0.001, where 4 is the critical value. The latter corresponds to 10.45 ± 0.01dB which reflects the average non-classical noise suppression of the two squeezed vacuum states used to generate the entanglement. With the results of this work demanding quantum information protocols will become feasible.

© 2013 OSA

OCIS Codes
(270.6570) Quantum optics : Squeezed states
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: March 5, 2013
Revised Manuscript: April 13, 2013
Manuscript Accepted: April 13, 2013
Published: May 3, 2013

Tobias Eberle, Vitus Händchen, and Roman Schnabel, "Stable control of 10 dB two-mode squeezed vacuum states of light," Opt. Express 21, 11546-11553 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys.81, 865–942 (2009). [CrossRef]
  2. D. Bouwmeester, J. Pan, K. Mattle, and M. Eibl, “Experimental quantum teleportation,” Nature390, 575–579 (1997). [CrossRef]
  3. A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science282, 706–709 (1998). [CrossRef] [PubMed]
  4. C. H. Bennett and S. J. Wiesner, “Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States,” Phys. Rev. Lett.69, 2881 (1992). [CrossRef] [PubMed]
  5. S. Braunstein and H. Kimble, “Dense coding for continuous variables,” Phys. Rev. A61, 042302 (2000). [CrossRef]
  6. R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun.1, 121 (2010). [CrossRef] [PubMed]
  7. W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, “Quantum Noise Limited and Entanglement-Assisted Magnetometry,” Phys. Rev. Lett.104, 133601 (2010). [CrossRef] [PubMed]
  8. S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-Dense Metrology,” arXiv 1211.3570 (2012).
  9. C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian Quantum Information,” Rev. Mod. Phys.84, 621 (2012). [CrossRef]
  10. H. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932 (1998). [CrossRef]
  11. D. P. DiVincenzo, “Quantum Computation,” Science270, 255 (1995). [CrossRef]
  12. J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007). [CrossRef]
  13. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks,” Phys. Rev. Lett.109, 100502 (2012). [CrossRef] [PubMed]
  14. G. Smith and J. Yard, “Quantum communication with zero-capacity channels,” Science321, 1812–5 (2008). [CrossRef] [PubMed]
  15. G. Smith, J. A. Smolin, and J. Yard, “Quantum communication with Gaussian channels of zero quantum capacity,” Nat. Phot.5, 624–627 (2011). [CrossRef]
  16. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett.68, 3663–3666 (1992). [CrossRef] [PubMed]
  17. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett.104, 251102 (2010). [CrossRef] [PubMed]
  18. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763–72 (2011). [CrossRef]
  19. W. P. Bowen, R. Schnabel, and P. K. Lam, “Experimental Investigation of Criteria for Continuous Variable Entanglement,” Phys. Rev. Lett.90, 043601 (2003). [CrossRef] [PubMed]
  20. N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A74, 060101(R) (2006). [CrossRef]
  21. B. Hage, J. Janousek, S. Armstrong, T. Symul, J. Bernu, H. M. Chrzanowski, P. K. Lam, and H.-A. Bachor, “Demonstrating various quantum effects with two entangled laser beams,” Eur. Phys. J. D63, 457–461 (2011). [CrossRef]
  22. S. Steinlechner, J. Bauchrowitz, T. Eberle, and R. Schnabel, “Strong Einstein-Podolsky-Rosen steering with unconditional entangled states,” Phys. Rev. A87, 022104 (2013). [CrossRef]
  23. S. Ast, R. M. Nia, A. Schönbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, and R. Schnabel, “High-efficiency frequency doubling of continuous-wave laser light,” Opt. Lett.36, 3467–9 (2011). [CrossRef] [PubMed]
  24. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69, 79–87 (2001). [CrossRef]
  25. B. Hage, A. Franzen, J. DiGuglielmo, P. Marek, J. Fiurasek, and R. Schnabel, “On the distillation and purification of phase-diffused squeezed states,” N. J. Phys.9, 227 (2007). [CrossRef]
  26. J. DiGuglielmo, A. Samblowski, B. Hage, C. Pineda, J. Eisert, and R. Schnabel, “Experimental Unconditional Preparation and Detection of a Continuous Bound Entangled State of Light,” Phys. Rev. Lett.107, 240503 (2011). [CrossRef]
  27. J. DiGuglielmo, B. Hage, A. Franzen, J. Fiurasek, and R. Schnabel, “Experimental characterization of Gaussian quantum-communication channels,” Phys. Rev. A76, 012323 (2007). [CrossRef]
  28. L. Duan, G. Giedke, J. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett.84, 2722–2725 (2000). [CrossRef] [PubMed]
  29. M. D. Reid, “Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification,” Phys. Rev. A40, 913 (1989). [CrossRef] [PubMed]
  30. M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665–1667 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited