OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11606–11617

Large-mode enhancement cavities

Henning Carstens, Simon Holzberger, Jan Kaster, Johannes Weitenberg, Volodymyr Pervak, Alexander Apolonski, Ernst Fill, Ferenc Krausz, and Ioachim Pupeza  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 11606-11617 (2013)
http://dx.doi.org/10.1364/OE.21.011606


View Full Text Article

Enhanced HTML    Acrobat PDF (1053 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In passive enhancement cavities the achievable power level is limited by mirror damage. Here, we address the design of robust optical resonators with large spot sizes on all mirrors, a measure that promises to mitigate this limitation by decreasing both the intensity and the thermal gradient on the mirror surfaces. We introduce a misalignment sensitivity metric to evaluate the robustness of resonator designs. We identify the standard bow-tie resonator operated close to the inner stability edge as the most robust large-mode cavity and implement this cavity with two spherical mirrors with 600 mm radius of curvature, two plane mirrors and a roundtrip length of 1.2 m, demonstrating a stable power enhancement of near-infrared laser light by a factor of 2000. Beam radii of 5.7 mm × 2.6 mm (sagittal × tangential 1/e2 intensity radius) on all mirrors are obtained. We propose a simple all-reflective ellipticity compensation scheme. This will enable a significant increase of the attainable power and intensity levels in enhancement cavities.

© 2013 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 3, 2013
Revised Manuscript: April 23, 2013
Manuscript Accepted: April 27, 2013
Published: May 3, 2013

Citation
Henning Carstens, Simon Holzberger, Jan Kaster, Johannes Weitenberg, Volodymyr Pervak, Alexander Apolonski, Ernst Fill, Ferenc Krausz, and Ioachim Pupeza, "Large-mode enhancement cavities," Opt. Express 21, 11606-11617 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-11606


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, G. Boyd, and J. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quant. Electron.2, 109–124 (1966). [CrossRef]
  2. I. Pupeza, Power Scaling of Enhancement Cavities for Nonlinear Optics (Springer, 2012). [CrossRef]
  3. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature482, 68–71 (2012). [CrossRef] [PubMed]
  4. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett.35, 2052–2054 (2010). [CrossRef] [PubMed]
  5. J. Lee, D. R. Carlson, and R. J. Jones, “Optimizing intracavity high harmonic generation for XUV fs frequency combs,” Opt. Express19, 23315–23326 (2011). [CrossRef] [PubMed]
  6. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436, 234–237 (2005). [CrossRef] [PubMed]
  7. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett.94, 193201 (2005). [CrossRef] [PubMed]
  8. T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Extreme nonlinear optics in a femtosecond enhancement cavity,” Phys. Rev. Lett.107, 183903 (2011). [CrossRef] [PubMed]
  9. D. R. Carlson, J. Lee, J. Mongelli, E. M. Wright, and R. J. Jones, “Intracavity ionization and pulse formation in femtosecond enhancement cavities,” Opt. Lett.36, 2991–2993 (2011). [CrossRef] [PubMed]
  10. I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100-electronvolt radiation,” accepted for publication in Nat. Photonics (2013)
  11. I. B. Angelov, A. v. Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage of dispersive coatings,” Proc. SPIE8190, 81900B (2011). [CrossRef]
  12. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71(2005). [CrossRef]
  13. M. Theuer, D. Molter, K. Maki, C. Otani, J. A. L’huillier, and R. Beigang, “Terahertz generation in an actively controlled femtosecond enhancement cavity,” Appl. Phys. Lett.93, 041119–3 (2008). [CrossRef]
  14. K. Sakaue, M. Washio, S. Araki, M. Fukuda, Y. Higashi, Y. Honda, T. Omori, T. Taniguchi, N. Terunuma, J. Urakawa, and N. Sasao, “Observation of pulsed x-ray trains produced by laser-electron Compton scatterings,” Rev. Sci. Instrum.80, 123304–123304–7 (2009). [CrossRef]
  15. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975).
  16. H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE54, 1312–1329 (1966). [CrossRef]
  17. V. Magni, “Multielement stable resonators containing a variable lens,” J. Opt. Soc. Am. A4, 1962–1969 (1987). [CrossRef]
  18. S. d. Silvestri, P. Laporta, and V. Magni, “Rod thermal lensing effects in solid-state laser ring resonators,” Opt. Commun.65, 373–376 (1988). [CrossRef]
  19. S. Gigan, L. Lopez, N. Treps, A. Maître, and C. Fabre, “Image transmission through a stable paraxial cavity,” Phys. Rev. A72, 023804 (2005). [CrossRef]
  20. N. Hodgson and H. Weber, “Misalignment sensitivity of stable resonators in multimode operation,” J. Mod. Opt.39, 1873–1882 (1992). [CrossRef]
  21. R. Hauck, H. P. Kortz, and H. Weber, “Misalignment sensitivity of optical resonators,” Appl. Opt.19, 598–601 (1980). [CrossRef] [PubMed]
  22. W. B. Joyce and B. C. DeLoach, “Alignment of Gaussian beams,” Appl. Opt.23, 4187–4196 (1984). [CrossRef] [PubMed]
  23. F. Kawazoe, R. Schilling, and H. Lück, “Eigenmode changes in a misaligned triangular optical cavity,” J. Opt.13, 055504 (2011). [CrossRef]
  24. A. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J40, 453–488 (1961).
  25. E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. Le Blanc, F. Salin, and P. Agostini, “Optimizing high harmonic generation in absorbing gases: model and experiment,” Phys. Rev. Lett.82, 1668–1671 (1999). [CrossRef]
  26. C. M. Heyl, J. Güdde, A. L’Huillier, and U. Höfer, “High-order harmonic generation with μJ laser pulses at high repetition rates,” J. Phys. B45, 074020 (2012). [CrossRef]
  27. A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, T. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express16, 6233–6239 (2008). [CrossRef] [PubMed]
  28. K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express14, 8189–8197 (2006). [CrossRef] [PubMed]
  29. T. Heupel, M. Weitz, and T. W. Hänsch, “Phase-coherent light pulses for atom optics and interferometry,” Opt. Lett.22, 1719 (1997). [CrossRef]
  30. G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics7, 258–261 (2013). [CrossRef]
  31. J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity,” Opt. Express19, 9551–9561 (2011). [CrossRef] [PubMed]
  32. W. P. Putnam, D. N. Schimpf, G. Abram, and F. X. Kärtner, “Bessel-Gauss beam enhancement cavities for high-intensity applications,” Opt. Express20, 24429–24443 (2012). [CrossRef] [PubMed]
  33. J. A. Arnaud, “Degenerate optical cavities,” Appl. Opt.8, 189–195 (1969). [CrossRef] [PubMed]
  34. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett.10, 65–67 (1985). [CrossRef] [PubMed]
  35. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983). [CrossRef]
  36. H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quant. Electron.8, 373–379 (1972). [CrossRef]
  37. D. Sigg and N. Mavalvala, “Principles of calculating the dynamical response of misaligned complex resonant optical interferometers,” J. Opt. Soc. Am. A17, 1642–1649 (2000). [CrossRef]
  38. F. Zomer, Y. Fedala, N. Pavloff, V. Soskov, and A. Variola, “Polarization induced instabilities in external four-mirror Fabry-Perot cavities,” Appl. Opt.48, 6651–6661 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited