OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S1 — Jan. 14, 2013
  • pp: A15–A22

Energy relaxation in CdSe nanocrystals: the effects of morphology and film preparation

Bryan T. Spann, Liangliang Chen, Xiulin Ruan, and Xianfan Xu  »View Author Affiliations


Optics Express, Vol. 21, Issue S1, pp. A15-A22 (2013)
http://dx.doi.org/10.1364/OE.21.000A15


View Full Text Article

Enhanced HTML    Acrobat PDF (1188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrafast time-resolved absorption spectroscopy is used to investigate exciton dynamics in CdSe nanocrystal films. The effects of morphology, quantum-dot versus quantum-rod, and preparation of nanocrystals in a thin film form are investigated. The measurements revealed longer intraband exciton relaxation in quantum-rods than in quantum-dots. The slowed relaxation in quantum-rods is due to mitigation of the Auger-relaxation mechanism from elongating the nanocrystal. In addition, the nanocrystal thin film showed long-lived confined acoustic phonons corresponding to the ellipsoidal breathing mode, contrary to others work on colloidal systems of CdSe nanocrystals.

© 2012 OSA

OCIS Codes
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(350.6050) Other areas of optics : Solar energy
(160.4236) Materials : Nanomaterials

ToC Category:
Spectroscopy

History
Original Manuscript: September 4, 2012
Revised Manuscript: October 31, 2012
Manuscript Accepted: November 5, 2012
Published: November 12, 2012

Citation
Bryan T. Spann, Liangliang Chen, Xiulin Ruan, and Xianfan Xu, "Energy relaxation in CdSe nanocrystals: the effects of morphology and film preparation," Opt. Express 21, A15-A22 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S1-A15


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B104(26), 6112–6123 (2000). [CrossRef]
  2. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000). [CrossRef] [PubMed]
  3. P. Kambhampati, “Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale,” J. Phys. Chem. C115(45), 22089–22109 (2011). [CrossRef]
  4. P. Kambhampati, “Unraveling the structure and dynamics of excitons in semiconductor quantum dots,” Acc. Chem. Res.44(1), 1–13 (2011). [CrossRef] [PubMed]
  5. M. B. Mohamed, C. Burda, and M. A. El-Sayed, “Shape dependent ultrafast relaxation dynamics of CdSe Nanocrystals: Nanorods vs Nanodots,” Nano Lett.1(11), 589–593 (2001). [CrossRef]
  6. A. Nozik, “Quantum dot solar cells,” Physica E.14(1-2), 115–120 (2002). [CrossRef]
  7. K. Tvrdy and P. V. Kamat, “Substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces,” J. Phys. Chem. A113(16), 3765–3772 (2009). [CrossRef] [PubMed]
  8. K. Tvrdy, P. A. Frantsuzov, and P. V. Kamat, “Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.108(1), 29–34 (2011). [CrossRef] [PubMed]
  9. M. C. Beard and R. J. Ellingson, “Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion,” Laser Photon. Rev.2(5), 377–399 (2008). [CrossRef]
  10. I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc.128(7), 2385–2393 (2006). [CrossRef] [PubMed]
  11. A. Salant, M. Shalom, Z. Tachan, S. Buhbut, A. Zaban, and U. Banin, “Quantum rod-sensitized solar cell: nanocrystal shape effect on the photovoltaic properties,” Nano Lett.12(4), 2095–2100 (2012). [CrossRef] [PubMed]
  12. C. Murray, D. Norris, and M. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites,” J. Am. Chem. Soc.115(19), 8706–8715 (1993). [CrossRef]
  13. F. Shieh, A. E. Saunders, and B. A. Korgel, “General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures,” J. Phys. Chem. B109(18), 8538–8542 (2005). [CrossRef] [PubMed]
  14. W. Wang, S. Banerjee, S. Jia, M. L. Steigerwald, and I. P. Herman, “Ligand control of growth, morphology, and capping structure of colloidal CdSe nanorods,” Chem. Mater.19(10), 2573–2580 (2007). [CrossRef]
  15. J. Nanda, B. Kuruvilla, and D. Sarma, “Photoelectron spectroscopic study of CdS nanocrystallites,” Phys. Rev. B59(11), 7473–7479 (1999). [CrossRef]
  16. J. Nanda, S. Sapra, D. D. Sarma, N. Chandrasekharan, and G. Hodes, “Size-Selected Zinc Sulfide Nanocrystallites: Synthesis, Structure, and Optical Studies,” Chem. Mater.12(4), 1018–1024 (2000). [CrossRef]
  17. D. J. Norris and M. G. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16338–16346 (1996). [CrossRef] [PubMed]
  18. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett.5(5), 865–871 (2005). [CrossRef] [PubMed]
  19. L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, “Pseudopotential Theory of Auger Processes in CdSe Quantum Dots,” Phys. Rev. Lett.91(5), 056404 (2003). [CrossRef] [PubMed]
  20. D. Sagar, R. Cooney, S. Sewall, E. Dias, M. Barsan, I. Butler, and P. Kambhampati, “Size dependent, state-resolved studies of exciton-phonon couplings in strongly confined semiconductor quantum dots,” Phys. Rev. B77(23), 235321 (2008). [CrossRef]
  21. L. Dworak, V. V. Matylitsky, M. Braun, and J. Wachtveitl, “Coherent Longitudinal-Optical Ground-State Phonon in CdSe Quantum Dots Triggered by Ultrafast Charge Migration,” Phys. Rev. Lett.107(24), 247401 (2011). [CrossRef] [PubMed]
  22. L. Saviot, B. Champagnon, E. Duval, I. Kudriavtsev, and I. Ekimov, “Size dependence of acoustic and optical vibrational modes of CdSe nanocrystals in glasses,” J. Non-Cryst. Solids197(2-3), 238–246 (1996). [CrossRef]
  23. H. Lamb, “On the vibrations of an elastic sphere,” Proc. Lond. Math. Soc.S1-13(1), 189–212 (1881). [CrossRef]
  24. A. Cretì, M. Anni, M. Zavelani-Rossi, G. Lanzani, L. Manna, and M. Lomascolo, “Ultrafast carrier dynamics and confined acoustic phonons in CdSe nanorods,” J. Opt. A: Pure Appl. Opt.10(6), 064004 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited