OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S1 — Jan. 14, 2013
  • pp: A157–A166

Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings

Seung Jae Oh, Sameer Chhajed, David J. Poxson, Jaehee Cho, E. Fred Schubert, Sung Ju Tark, Donghwan Kim, and Jong Kyu Kim  »View Author Affiliations

Optics Express, Vol. 21, Issue S1, pp. A157-A166 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2606 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance enhancement of polycrystalline Si solar cells by using an optimized discrete multilayer anti-reflection (AR) coating with broadband and omni-directional characteristics is presented. Discrete multilayer AR coatings are optimized by a genetic algorithm, and experimentally demonstrated by refractive-index tunable SiO2 nano-helix arrays and co-sputtered (SiO2)x(TiO2)1-x thin film layers. The optimized multilayer AR coating shows a reduced total reflection, leading to the high incident-photon-to-electron conversion efficiency over a correspondingly wide range of wavelengths and incident angles, offering a very promising way to harvest more solar energy by virtually any type of solar cells for a longer time of a day.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.1210) Thin films : Antireflection coatings
(310.4165) Thin films : Multilayer design
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: July 31, 2012
Revised Manuscript: November 29, 2012
Manuscript Accepted: November 29, 2012
Published: December 17, 2012

Seung Jae Oh, Sameer Chhajed, David J. Poxson, Jaehee Cho, E. Fred Schubert, Sung Ju Tark, Donghwan Kim, and Jong Kyu Kim, "Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings," Opt. Express 21, A157-A166 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991). [CrossRef]
  2. L. Schirone, G. Sotgiu, F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297(1-2), 296–298 (1997). [CrossRef]
  3. J. S. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. S11(1), 51–56 (1879). [CrossRef]
  4. Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010). [CrossRef]
  5. C. C. Striemer, P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Appl. Phys. Lett. 81(16), 2980–2982 (2002). [CrossRef]
  6. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009). [CrossRef] [PubMed]
  7. C. Lee, S. Y. Bae, S. Mobasser, H. Manohara, “A Novel Silicon Nanotips Antireflection Surface for the Micro Sun Sensor,” Nano Lett. 5(12), 2438–2442 (2005). [CrossRef] [PubMed]
  8. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007). [CrossRef] [PubMed]
  9. K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000). [CrossRef]
  10. Y. Kanamori, M. Sasaki, K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999). [CrossRef] [PubMed]
  11. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008). [CrossRef] [PubMed]
  12. S. Hyun Lee, G. Earle Jellison, C. E. Duty, J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett. 99(15), 153113 (2011). [CrossRef]
  13. Y.-C. Chao, C.-Y. Chen, C.-A. Lin, J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy and Environ. Sci. 4(9), 3436–3441 (2011). [CrossRef]
  14. M. F. Schubert, D. J. Poxson, F. W. Mont, J. K. Kim, E. F. Schubert, “Performance of antireflection coatings consisting of multiple discrete layers and comparison with continuously graded antireflection coatings,” Appl. Phys. Express 3(8), 082502 (2010). [CrossRef]
  15. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  16. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.) 20(4), 801–804 (2008). [CrossRef]
  17. P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009). [CrossRef]
  18. S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008). [CrossRef]
  19. D. J. Poxson, M. F. Schubert, F. W. Mont, E. F. Schubert, J. K. Kim, “Broadband omnidirectional antireflection coatings optimized by genetic algorithm,” Opt. Lett. 34(6), 728–730 (2009). [CrossRef] [PubMed]
  20. D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011). [CrossRef]
  21. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008). [CrossRef] [PubMed]
  22. S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, J. K. Kim, “Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics,” Appl. Phys. Express 4(5), 052503 (2011). [CrossRef]
  23. S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, W. N. Gill, J. L. Plawsky, “Surface modified spin on xerogel films as interlayer dielectrics,” J. Vac. Sci. Technol. B 17(1), 205–212 (1999). [CrossRef]
  24. J. Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, E. F. Schubert, “Internal high-reflectivity omni-directional reflectors,” Appl. Phys. Lett. 87(3), 031111 (2005). [CrossRef]
  25. L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305(1-2), 1–21 (1997). [CrossRef]
  26. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik 416(7), 636–664 (1935). [CrossRef]
  27. A. M. Goodman, “Optical interference method for the approximate determination of refractive index and thickness of a transparent layer,” Appl. Opt. 17(17), 2779–2787 (1978). [CrossRef] [PubMed]
  28. M. Khardani, M. Bouaïcha, B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 4(6), 1986–1990 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited