OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S1 — Jan. 14, 2013
  • pp: A167–A172

A high efficiency dual-junction solar cell implemented as a nanowire array

Shuqing Yu and Bernd Witzigmann  »View Author Affiliations

Optics Express, Vol. 21, Issue S1, pp. A167-A172 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we present an innovative design of a dual-junction nanowire array solar cell. Using a dual-diameter nanowire structure, the solar spectrum is separated and absorbed in the core wire and the shell wire with respect to the wavelength. This solar cell provides high optical absorptivity over the entire spectrum due to an electromagnetic concentration effect. Microscopic simulations were performed in a three-dimensional setup, and the optical properties of the structure were evaluated by solving Maxwell’s equations. The Shockley-Queisser method was employed to calculate the current-voltage relationship of the dual-junction structure. Proper design of the geometrical and material parameters leads to an efficiency of 39.1%.

© 2012 OSA

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:

Original Manuscript: September 14, 2012
Revised Manuscript: November 4, 2012
Manuscript Accepted: November 5, 2012
Published: December 20, 2012

Shuqing Yu and Bernd Witzigmann, "A high efficiency dual-junction solar cell implemented as a nanowire array," Opt. Express 21, A167-A172 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Fraas, L. Partain, Solar cells and their applications (John Wiley & Sons, Inc., 2010). [CrossRef]
  2. M. A. Green, Third generation photovoltaics: advanced solar energy conversion (Springer, 2005).
  3. P. Wuerfel, Physics of solar cells: from principles to new concepts (Wiley-VCH, 2005).
  4. R. Yan, D. Gargas, P. Yang, “Nanowire photonics,” Nature Photon. 3, 569–576 (2009). [CrossRef]
  5. M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE. J. Sel. Top. Quant 17, 1050–1061 (2011). [CrossRef]
  6. J. Kupec, B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express 17, 10399–10410 (2009). [CrossRef] [PubMed]
  7. E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010). [CrossRef] [PubMed]
  8. L. Hu, G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007). [CrossRef] [PubMed]
  9. Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82, 205328 (2010). [CrossRef]
  10. A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. Mclntyre, Y. Cui, J. Harris, “Design and growth of IIIV nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC) (2010 35th IEEE), 002034 –002037.
  11. H. Nguyen, Y. Chang, I. Shih, Z. Mi, “InN p-i-n nanowire solar cells on Si,” IEEE. J. Sel. Top. Quant 17, 1062–1069 (2011). [CrossRef]
  12. H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapour phase epitaxy,” Appl. Phys. Expr. 2, 035004 (2009). [CrossRef]
  13. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007). [CrossRef] [PubMed]
  14. L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002). [CrossRef] [PubMed]
  15. S. Yu, J. Kupec, B. Witzigmann, “Efficiency analysis of III–V axial and core-shell nanowire solar cells”, J Comput. Theor. Nanosci. 9, 688–695 (2012). [CrossRef]
  16. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823–3827 (2010). [CrossRef] [PubMed]
  17. J. Kupec, R. L. Stoop, B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18, 27589–27605 (2010). [CrossRef]
  18. N. Huang, C. Lin, M. L. Povinelli, ”Limiting efficiencies of tandem solar cells consisting of III–V nanowire arrays on silicon,” J. Appl. Phys. 112, 064321 (2012). [CrossRef]
  19. W. Shockley, H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961). [CrossRef]
  20. E. D. Palik, Handbook of optical constants of solids (Academic Press, 1985).
  21. Y. Yu, V. E. Ferry, A. P. Alivisatos, L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett. 7, 3674–3681 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited