OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S1 — Jan. 14, 2013
  • pp: A7–A14

Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells

Ya-Ju Lee, Yung-Chi Yao, and Chia-Hao Yang  »View Author Affiliations

Optics Express, Vol. 21, Issue S1, pp. A7-A14 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2497 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel scheme of direct electrical contact on vertically aligned silicon nanowire (SiNW) axial p-n junction is demonstrated by means of oblique-angle deposition of slanted indium-tin-oxide (ITO) film for photovoltaic applications. The slanted ITO film exhibits an acceptable resistivity of 1.07x10−3Ω-cm underwent RTA treatment of T = 450°C, and the doping concentration and carrier mobility by Hall measurement amount to 3.7x1020cm−3 and 15.8cm2/V-s, respectively, with an n-type doping polarity. Because of the shadowing effect provided by the SiNWs, the incident ITO vapor-flow is deposited preferentially on the top of SiNWs, which coalesces and eventually forms a nearly continuous film for the subsequent fabrication of grid electrode. Under AM 1.5G normal illumination, our axial p-n junction SiNW solar cell exhibits an open circuit voltage of VOC = 0.56V, and a short circuit current of JSC = 1.54 mA/cm2 with a fill factor of FF = 30%, resulting in a total power conversion efficiency of PEC = 0.26%.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.1210) Thin films : Antireflection coatings
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.7005) Thin films : Transparent conductive coatings

ToC Category:

Original Manuscript: September 26, 2012
Revised Manuscript: October 23, 2012
Manuscript Accepted: November 5, 2012
Published: November 9, 2012

Ya-Ju Lee, Yung-Chi Yao, and Chia-Hao Yang, "Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells," Opt. Express 21, A7-A14 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. 62(6), 175–189 (2008). [CrossRef]
  2. C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A 29(3), 030801 (2011). [CrossRef]
  3. A. Fujisaka, S. Kang, L. Tian, Y. L. Chow, and A. Belyaev, “Implant-cleave process enables ultra-thin wafers without kerf loss,” Photovoltaics World, pp. 21–24, Issue: May/Jun (2011).
  4. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  5. O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19(3), 307–312 (2011). [CrossRef]
  6. K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000). [CrossRef]
  7. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005). [CrossRef] [PubMed]
  8. V. V. Iyengar, B. K. Nayak, M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010). [CrossRef]
  9. J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, D.-L. Kwong, “S nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009). [CrossRef]
  10. V. V. Kislyuk, O. P. Dimitriev, “Nanorods and nanotubes for solar cells,” J. Nanosci. Nanotechnol. 8(1), 131–148 (2008). [CrossRef] [PubMed]
  11. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007). [CrossRef] [PubMed]
  12. S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010). [CrossRef] [PubMed]
  13. B. M. Kayes, H. A. Atwater, N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005). [CrossRef]
  14. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007). [CrossRef]
  15. E. C. Garnett, P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008). [CrossRef] [PubMed]
  16. S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1568–1571 (2009). [CrossRef]
  17. Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008). [CrossRef] [PubMed]
  18. M. A. Green, “The path to 25% silicon solar cell efficiency: history of silicon cell evolution,” Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009). [CrossRef]
  19. S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, G. Q. Lo, D. L. Kwong, “Design high-efficiency Si nanopillar-array-textured thin-film solar cell,” IEEE Electron Device Lett. 31(4), 335–337 (2010). [CrossRef]
  20. K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, M. M. Hasan, “Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays,” Appl. Phys. Lett. 101(2), 023114 (2012). [CrossRef]
  21. A. I. Hochbaum, D. Gargas, Y. J. Hwang, P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett. 9(10), 3550–3554 (2009). [CrossRef] [PubMed]
  22. X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/H2 O2 produces porous silicon,” Appl. Phys. Lett. 77(16), 2572 (2000). [CrossRef]
  23. K. Peng, X. Wang, S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92(16), 163103 (2008). [CrossRef]
  24. K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998). [CrossRef]
  25. Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009). [CrossRef]
  26. M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc. 52(8), 443–446 (1969). [CrossRef]
  27. X. Xiao, G. Dong, J. Shao, H. He, Z. Fan, “Optical and electrical properties of SnO2:Sb thin films deposited by oblique angle deposition,” Appl. Surf. Sci. 256(6), 1636–1640 (2010). [CrossRef]
  28. Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express 20(4), 3479–3489 (2012). [CrossRef] [PubMed]
  29. D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76(1-3), 277–283 (2004). [CrossRef]
  30. M. Born and E. Wolf, Principles of optics 7th edition. Cambridge University Press, Cambridge, U.K., 46 (1999).
  31. I. Tobı’as, C. del Can˜izo, J. Alonso, Handbook of Photovoltaic Science and Engineering (Wiley, New York, 2004).
  32. M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (Prentice-Hall, Englewood Cliffs, New Jersey, 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited