OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S1 — Jan. 14, 2013
  • pp: A84–A95

Pore size dependence of diffuse light scattering from anodized aluminum solar cell backside reflectors

Yao-Chung Tsao, Thomas Søndergaard, Esben Skovsen, Leonid Gurevich, Kjeld Pedersen, and Thomas Garm Pedersen  »View Author Affiliations


Optics Express, Vol. 21, Issue S1, pp. A84-A95 (2013)
http://dx.doi.org/10.1364/OE.21.000A84


View Full Text Article

Enhanced HTML    Acrobat PDF (2165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of backside reflectors (BSRs) is crucial for the efficiency of future low cost thin-film silicon solar cells. In this work, the scattering efficiency of bare aluminum BSRs with different pore sizes and ordering of surface microstructures are investigated. The BSRs were fabricated by utilizing the process of self-ordering anodic oxidation on aluminum foils resulting in regions with an approximately hexagonally periodic surface microstructure. It was found that the total and diffuse light scattering reflectance spectra showed opposite tendencies when increasing the pore size of the microstructures. When the pore size was increased to 700 nm, more than 68% of the incident light with wavelengths from 250 nm to 800 nm was reflected by scattering. For a similar geometry, except that it had less ordering, this number was increased to around 80%. This large fraction of reflected light observed in the form of scattering is promising for the use of the considered geometries as BSRs in thin-film silicon solar cells.

© 2012 OSA

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(240.0240) Optics at surfaces : Optics at surfaces
(240.6645) Optics at surfaces : Surface differential reflectance
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Scattering

History
Original Manuscript: October 3, 2012
Revised Manuscript: November 19, 2012
Manuscript Accepted: November 19, 2012
Published: December 4, 2012

Citation
Yao-Chung Tsao, Thomas Søndergaard, Esben Skovsen, Leonid Gurevich, Kjeld Pedersen, and Thomas Garm Pedersen, "Pore size dependence of diffuse light scattering from anodized aluminum solar cell backside reflectors," Opt. Express 21, A84-A95 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S1-A84


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10(11), 4692–4696 (2010). [CrossRef] [PubMed]
  2. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009). [CrossRef] [PubMed]
  3. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010). [CrossRef] [PubMed]
  4. Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat Commun3, 664 (2012). [CrossRef] [PubMed]
  5. E. C. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  6. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010). [PubMed]
  7. B. Weintraub, Y. Wei, and Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells,” Chem., Int. Ed.48(47), 8981–8985 (2009). [CrossRef]
  8. C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett.11(10), 4443–4448 (2011). [CrossRef] [PubMed]
  9. A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett.78(5), 563–565 (2001). [CrossRef]
  10. K. Söderström, F.-J. Haug, J. Escarré, C. Pahud, R. Biron, and C. Ballif, “Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n-i-p thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells95(12), 3585–3591 (2011). [CrossRef]
  11. G. Yue, B. Yan, L. Sivec, Y. Zhou, J. Yang, and S. Guha, “Effect of impurities on performance of hydrogenated nanocrystalline solar cells,” Sol. Energy Mater. Sol. Cells104, 109–112 (2012). [CrossRef]
  12. K. Saito, M. Sano, S. Okabe, S. Sugiyama, and K. Ogawa, “Microcrystalline silicon solar cells fabricated by VHF plasma CVD method,” Sol. Energy Mater. Sol. Cells86(4), 565–575 (2005). [CrossRef]
  13. A. Takano, M. Uno, M. Tanda, S. Iwasaki, H. Tanaka, J. Yasuda, and T. Kamoshita, “Highly textured silver electrode deposition using roll-to-roll low-temperature sputtering process,” Jpn. J. Appl. Phys.43(No. 2B), L277–L279 (2004). [CrossRef]
  14. F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, “Development of micromorph tandem solar cells on flexible low-cost plastic substrates,” Sol. Energy Mater. Sol. Cells93(6-7), 884–887 (2009). [CrossRef]
  15. H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett.93(14), 143501 (2008). [CrossRef]
  16. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34(14), 2476–2482 (1995). [CrossRef] [PubMed]
  17. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006). [CrossRef]
  18. K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, and H. Nishimura, “Highly textured SnO2:F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd.42, 129–137 (1992).
  19. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012). [CrossRef] [PubMed]
  20. R. C. Furneaux, W. R. Rigby, and A. P. Davidson, “The formation of controlled-porosity membranes from anodically oxidized aluminium,” Nature337(6203), 147–149 (1989). [CrossRef]
  21. T. M. Whitney, P. C. Searson, J. S. Jiang, and C. L. Chien, “Fabrication and magnetic properties of arrays of metallic nanowires,” Science261(5126), 1316–1319 (1993). [CrossRef] [PubMed]
  22. F. Matsumoto, K. Nishio, and H. Masuda, “Flow-through-type DNA array based on ideally ordered anodic porous alumina substrate,” Adv. Mater. (Deerfield Beach Fla.)16(23-24), 2105–2108 (2004). [CrossRef]
  23. S. Z. Chu, K. Wada, S. Inoue, S. I. Todoroki, Y. K. Takahashi, and K. Hono, “Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition,” Chem. Mater.14(11), 4595–4602 (2002). [CrossRef]
  24. M. S. Sander, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, “Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates,” Adv. Mater. (Deerfield Beach Fla.)14(9), 665–667 (2002). [CrossRef]
  25. C. R. Martin, G. Che, B. B. Lakshmi, and E. R. Fisher, “Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production,” Nature393(6683), 346–349 (1998). [CrossRef]
  26. S. Z. Chu, S. Inoue, K. Wada, S. Hishita, and K. Kurashima, “Self-organized nanoporous anodic titania films and ordered titania nanodots/nanorods on Glass,” Adv. Funct. Mater.15(8), 1343–1349 (2005). [CrossRef]
  27. S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” J. Electrochem. Soc.153(9), B384–B391 (2006). [CrossRef]
  28. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995). [CrossRef] [PubMed]
  29. H. Masuda, F. Hasegwa, and S. Ono, “Self‐ordering of cell arrangement of anodic porous alumina formed in sulfuric-acid-solution,” J. Electrochem. Soc.144(5), L127–L130 (1997). [CrossRef]
  30. H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodicporous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Physiol.37(Part 2, No. 11A), L1340–L1342 (1998). [CrossRef]
  31. H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev.132(5), 1918–1928 (1963). [CrossRef]
  32. H. Sai and M. Kondo, “Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,” J. Appl. Phys.105(9), 094511 (2009). [CrossRef]
  33. M. V. Klein and T. E. Furtak, Optics, 2nd edition (John Wiley & Sons, 1986).
  34. H. Kikuta, H. Yoshida, and K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev.2(2), 92–99 (1995). [CrossRef]
  35. M. Boccard, P. Cuony, C. Battaglia, M. Despeisse, and C. Ballif, “Unlinking absorption and haze in thin film silicon solar cells front electrodes,” Phys. stat. sol. RRL4, 326–328 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited