OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S2 — Mar. 11, 2013
  • pp: A208–A220

Opimization of imprintable nanostructured a-Si solar cells: FDTD study

Christian Fisker and Thomas Garm Pedersen  »View Author Affiliations

Optics Express, Vol. 21, Issue S2, pp. A208-A220 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2104 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a finite-difference time-domain (FDTD) study of an amorphous silicon (a-Si) thin film solar cell, with nano scale patterns on the substrate surface. The patterns, based on the geometry of anisotropically etched silicon gratings, are optimized with respect to the period and anti-reflection (AR) coating thickness for maximal absorption in the range of the solar spectrum. The structure is shown to increase the cell efficiency by 10.2% compared to a similar flat solar cell with an optimized AR coating thickness. An increased back reflection can be obtained with a 50nm zinc oxide layer on the back reflector, which gives an additional efficiency increase, leading to a total of 14.9%. In addition, the patterned cells are shown to be up to 3.8% more efficient than an optimized textured reference cell based on the Asahi U-type glass surface. The effects of variations of the optimized solar cell structure due to the manufacturing process are investigated, and shown to be negligible for variations below ±10%.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: August 1, 2012
Revised Manuscript: November 21, 2012
Manuscript Accepted: December 31, 2012
Published: January 14, 2013

Christian Fisker and Thomas Garm Pedersen, "Opimization of imprintable nanostructured a-Si solar cells: FDTD study," Opt. Express 21, A208-A220 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NGP Asia Mater. 2, 96–102 (2010). [CrossRef]
  2. A. R. Jha, Solar Cell Technology and Applications (Auerbach Publications, 2010).
  3. T. Markvart, L. Castañer, Solar Cells: Materials, Manufacture and Operation (Elsevier Ltd., 2005).
  4. J. Poortmans, V. Arkhipov, Thin Film Solar Cells: Fabrication, Characterization and Applications (John Wiley and Sons, Ltd, 2006). [CrossRef]
  5. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12, 113–142 (2004). [CrossRef]
  6. K. Catchpole, S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121, 315 – 318 (2006). [CrossRef]
  7. S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells.” J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  8. E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, H. Stiebig, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-Crys. Sol. 354, 2488–2491 (2008). [CrossRef]
  9. R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, R. E. I. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” J. Appl. Phys. 102, 014503 (2007). [CrossRef]
  10. P. Campbell, “Light trapping in textured solar cells,” Sol. Energy Mater. 21, 165–172 (1990). [CrossRef]
  11. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, A. Polman, “Improved red-response in thin film a-si:h solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95, 183503 (2009). [CrossRef]
  12. A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19, 128–140 (2011). [CrossRef] [PubMed]
  13. F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104, 064509 (2008). [CrossRef]
  14. M. Berginski, J. Hupkes, M. Schulte, G. Schope, H. Stiebig, B. Rech, M. Wuttig, “The effect of front zno:al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007). [CrossRef]
  15. C. Haase, H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91, 061116 (2007). [CrossRef]
  16. A. Banerjee, S. Guha, “Study of back reflectors for amorphous silicon alloy solar cell application,” J. Appl. Phys. 69, 1030–1035 (1991). [CrossRef]
  17. J. Müller, G. Schöpe, O. Kluth, B. Rech, V. Sittinger, B. Szyszka, R. Geyer, P. Lechner, H. Schade, M. Ruske, G. Dittmar, H.-P. Bochem, “State-of-the-art mid-frequency sputtered zno films for thin film silicon solar cells and modules,” Thin Solid Films 442, 158–162 (2003). [CrossRef]
  18. P. Rostan, U. Rau, V. Nguyen, T. Kirchartz, M. Schubert, J. Werner, “Low-temperature a-si:h/zno/al back contacts for high-efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells 90, 1345–1352 (2006). [CrossRef]
  19. A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012). [CrossRef]
  20. B. B. Van Aken, M. C. Heijna, J. Löffler, W. J. Soppe, “Dynamically deposited thin-film silicon solar cells on imprinted foil,” Energy Procedia 10, 88–93 (2011). [CrossRef]
  21. B. B. Van Aken, J. Löffler, M. C. Heijna, W. J. Soppe, “Inline deposited thin-film silicon solar cells on imprinted foil using linear pecvd sources,” J. Non-Crys. Sol. 358, 2268–2271 (2012). [CrossRef]
  22. A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12, 2792–2796 (2012). [CrossRef] [PubMed]
  23. C.-H. Sun, W.-L. Min, N. C. Linn, P. Jiang, B. Jiang, “Templated fabrication of large area subwavelength antireflection gratings on silicon,” Appl. Phys. Lett. 91, 231105 (2007). [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  25. C. Rockstuhl, S. Fahr, F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008). [CrossRef]
  26. Lumerical FDTD Solutions, Available from http://www.lumerical.com/tcad-products/fdtd/ .
  27. J. Müller, B. Rech, J. Springer, M. Vanecek, “Tco and light trapping in silicon thin film solar cells,” Solar Energy 77, 917–930 (2004). [CrossRef]
  28. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009). [CrossRef]
  29. J. Rath, Y. Liu, M. de Jong, J. de Wild, J. Schuttauf, M. Brinza, R. Schropp, “Transparent conducting oxide layers for thin film silicon solar cells,” Thin Solid Films 518, e129–e135 (2010). [CrossRef]
  30. V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si:h solar cells,” Nano Lett. 11, 4239–4245 (2011). [CrossRef] [PubMed]
  31. M. Vetter, J. Andreu, J. Borrajo, A. Martin, J. Rodriguez, O. Agustsson, J. Schotsaert, K. Bittkau, R. Carius, A. Gordijn, A. Hoffmann, I. Macedo, J. Rath, R. Schropp, A. Antony, J. Bertomeu, F. Kail, “Development of high performance industrial tco glass for very large area a-si:h pv modules,” in “EU PVSEC Proceedings,” 2676–2679 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited