OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S2 — Mar. 11, 2013
  • pp: A221–A228

Surface Plasmon assisted CuxO photocatalyst for pure water splitting

Wen-Ting Kung, Yi-Hao Pai, Yu-Kuei Hsu, Chu-Hsuan Lin, and Chih-Ming Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue S2, pp. A221-A228 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2701 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, CuxO photocatalyst on plasmonic nanoporous Au film is proposed to enhancing the H2 evolution rate of pure water splitting. The nanoporous Au film can simultaneously provide surface-enhanced absorption and built-in potential. The reflection spectrum shows that the surface plasmon (SP) assisted absorption wavelength of the CuxO on the nanoporous Au film can be modified by changing the annealing temperature. It is found that the enhancement of the H2 evolution rate highly depends on the SP-assisted absorption. As the annealing temperature is 220°C, the H2 evolution rate is 58μmolhr−1 under the condition that the device area is 0.25cm2.

© 2013 OSA

OCIS Codes
(240.6670) Optics at surfaces : Surface photochemistry
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: November 12, 2012
Revised Manuscript: December 17, 2012
Manuscript Accepted: December 30, 2012
Published: January 14, 2013

Wen-Ting Kung, Yi-Hao Pai, Yu-Kuei Hsu, Chu-Hsuan Lin, and Chih-Ming Wang, "Surface Plasmon assisted CuxO photocatalyst for pure water splitting," Opt. Express 21, A221-A228 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Kubacka, M. L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer, M. Fernández-Garcia, “Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties,” J. Phys. Chem. C 113(21), 9182–9190 (2009). [CrossRef]
  2. M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, “Poling-Assisted Fabrication of Plasmonic Nanocomposite Devices in Glass,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4368–4372 (2010). [CrossRef] [PubMed]
  3. L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007). [CrossRef]
  4. X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, M. W. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010). [CrossRef]
  5. P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, U. Bach, “A Solid-State Plasmonic Solar Cell via Metal Nanoparticle Self-Assembly,” Adv. Mater. (Deerfield Beach Fla.) 24(35), 4750–4755 (2012). [CrossRef]
  6. C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011). [CrossRef]
  7. A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972). [CrossRef] [PubMed]
  8. A. Kudo, H. Kato, “Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting,” Chem. Phys. Lett. 331(5-6), 373–377 (2000). [CrossRef]
  9. H. Kato, K. Asakura, A. Kudo, “Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure,” J. Am. Chem. Soc. 125(10), 3082–3089 (2003). [CrossRef] [PubMed]
  10. K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Characterization of Rh-Cr Mixed-Oxide Nanoparticles Dispersed on (Ga(1-x)Zn(x))(N(1-x)Ox) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting,” J. Phys. Chem. B 110(28), 13753–13758 (2006). [CrossRef] [PubMed]
  11. K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Photocatalyst releasing hydrogen from water,” Nature 440(7082), 295–295 (2006). [CrossRef] [PubMed]
  12. K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, “Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation” Chem. Commun. (23), 2416–2417. (2001)
  13. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis,” J. Photochem. Photobiol. A 148(1–3), 71–77 (2002). [CrossRef]
  14. R. Abe, T. Takata, H. Sugihara and K. Domen, “Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3−/I− shuttle redox mediator” Chem. Commun. (30), 3829–3831. (2005)
  15. K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, and K. Domen, “Noble-Metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting,” Angew. Chem., Int. Ed. 2, 45 (46), 7806–7809. (2006)
  16. Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, “Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light,” J. Phys. Chem. C 111(2), 1042–1048 (2007). [CrossRef]
  17. Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414(6864), 625–627 (2001). [CrossRef] [PubMed]
  18. C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, 1976), p. 341.(1976)
  19. P. W. Baumeister, “Optical Absorption of Cuprous Oxide,” Phys. Rev. 121(2), 359–362 (1961). [CrossRef]
  20. G. Nagasubramanian, A. S. Gioda, A. J. Bard, “Photoelectrochemical Behavior of p-type Cu2O in Acetonitrile Solutions,” J. Electrochem. Soc. 128, 2158–2164 (1981). [CrossRef]
  21. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) (3): 357–358 (1998). [CrossRef]
  22. H. A. Chen, J. L. Long, Y. H. Lin, C. J. Weng, H. N. Lin, “Plasmonic properties of a nanoporous gold film investigated by far-field and near-field optical techniques,” J. Appl. Phys. 110(5), 054302 (2011). [CrossRef]
  23. J. A. Assimos, D. Trivich, “Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu2O-Cu contacts,” J. Appl. Phys. 44(4), 1687–1692 (1973). [CrossRef]
  24. M. Anpo, M. Takeuchi, “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,” J. Catal. 216(1-2), 505–516 (2003). [CrossRef]
  25. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2007).
  26. A. Schenk, U. Krumbein, “Coupled defect-level recombination: Theory and application to anomalous diode characteristics,” J. Appl. Phys. 78(5), 3185–3192 (1995). [CrossRef]
  27. A. Kaminski, J. J. Marchand, H. E. Omari, A. Laugier, Q. N. Le, and D. Sarti, “Conduction processes in silicon solar cells”, Proc. 25th IEEE PVSC, Washington DC, pp. 573–576. (1996)
  28. C. Y. Lin, Y. H. Lai, D. Mersch, E. Reisner, “Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. 3(12), 3482–3487 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited