OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S2 — Mar. 11, 2013
  • pp: A276–A284

Multi-scale and angular analysis of ray-optical light trapping schemes in thin-film solar cells: Micro lens array, V-shaped configuration, and double parabolic trapper

Changsoon Cho and Jung-Yong Lee  »View Author Affiliations


Optics Express, Vol. 21, Issue S2, pp. A276-A284 (2013)
http://dx.doi.org/10.1364/OE.21.00A276


View Full Text Article

Enhanced HTML    Acrobat PDF (1792 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An efficient light trapping scheme is a key to enhancing the power conversion efficiency (PCE) of thin-film photovoltaic (PV) cells by compensating for the insufficient light absorption. To handle optical components from nano-scale to micro-scale seamlessly, a multi-scale optical simulation is carefully designed in this study and is used to qualitatively analyze the light trapping performances of a micro lens array (MLA), a V-shaped configuration, and the newly proposed scheme, which is termed a double parabolic trapper (DPT) according to both daily and annual movement of the sun. DPT has the potential to enhance the PCE significantly, from 5.9% to 8.9%, for PCDTBT:PC70BM-based polymer solar cells by perfectly trapping the incident light between two parabolic PV cells.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4890) Materials : Organic materials
(350.6050) Other areas of optics : Solar energy
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photovoltaics

History
Original Manuscript: December 21, 2012
Revised Manuscript: February 7, 2013
Manuscript Accepted: February 9, 2013
Published: February 21, 2013

Citation
Changsoon Cho and Jung-Yong Lee, "Multi-scale and angular analysis of ray-optical light trapping schemes in thin-film solar cells: Micro lens array, V-shaped configuration, and double parabolic trapper," Opt. Express 21, A276-A284 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S2-A276


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” in Fiftheenth IEEE Photovoltaic Specialists Conference, pp. 867–870 (1981).
  2. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. A72(7), 899–907 (1982). [CrossRef]
  3. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987). [CrossRef]
  4. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions,” Prog. Photovolt. Res. Appl.10(4), 235–241 (2002). [CrossRef]
  5. W. L. Bai, Q. Q. Gan, F. Bartoli, J. Zhang, L. K. Cai, Y. D. Huang, and G. F. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett.34(23), 3725–3727 (2009). [CrossRef] [PubMed]
  6. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express17(25), 23058–23065 (2009). [CrossRef] [PubMed]
  7. O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl, and H. W. Schock, “Texture etched ZnO: Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1-2), 247–253 (1999). [CrossRef]
  8. J. Krc, M. Zeman, O. Kluth, E. Smole, and M. Topic, “Effect of surface roughness of ZnO: Al films on light scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Films426(1-2), 296–304 (2003). [CrossRef]
  9. J. M. Lee, S. J. Yun, J. K. Kim, and J. W. Lim, “Texturing of Ga-Doped ZnO Transparent Electrode for a-Si: H Thin Film Solar Cells,” Electrochem. Solid State14(11), B124–B126 (2011). [CrossRef]
  10. J. Muller, G. Schope, O. Kluth, B. Rech, V. Sittinger, B. Szyszka, R. Geyer, P. Lechner, H. Schade, M. Ruske, G. Dittmar, and H. P. Bochem, “State-of-the-art mid-frequency sputtered ZnO films for thin film silicon solar cells and modules,” Thin Solid Films442(1-2), 158–162 (2003). [CrossRef]
  11. J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy77(6), 917–930 (2004). [CrossRef]
  12. B. Rech and H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys. A-Mater.69, 155–167 (1999).
  13. F. Ruske, C. Jacobs, V. Sittinger, B. Szyszka, and W. Werner, “Large area ZnO: Al films with tailored-light scattering properties for photovoltaic applications,” Thin Solid Films515(24), 8695–8698 (2007). [CrossRef]
  14. J. Springer, B. Rech, W. Reetz, J. Muller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells85, 1–11 (2005).
  15. A. Abass, H. H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys.109(2), 023111 (2011). [CrossRef]
  16. C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010). [CrossRef]
  17. S. I. Na, S. S. Kim, J. Jo, S. H. Oh, J. Kim, and D. Y. Kim, “Efficient Polymer Solar Cells with Surface Relief Gratings Fabricated by Simple Soft Lithography,” Adv. Funct. Mater.18(24), 3956–3963 (2008). [CrossRef]
  18. S. I. Na, S.-S. Kim, S. S. Kwon, J. Jang, K. Juhwan, T. Lee, and K. Dong-Yu, “Surface relief gratings on poly(3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett.91(17), 173509 (2007). [CrossRef]
  19. H. H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19(S6Suppl 6), A1202–A1210 (2011). [CrossRef] [PubMed]
  20. K. Tvingstedt, N. K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett.91(11), 113514 (2007). [CrossRef]
  21. Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  22. J. Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010). [CrossRef] [PubMed]
  23. K. Tvingstedt, S. Dal Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express16(26), 21608–21615 (2008). [CrossRef] [PubMed]
  24. P. Peumans, V. Bulovic, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett.76(19), 2650–2652 (2000). [CrossRef]
  25. K. Tvingstedt, V. Andersson, F. Zhang, and O. Inganas, “Folded reflective tandem polymer solar cell doubles efficiency,” Appl. Phys. Lett.91(12), 123514 (2007). [CrossRef]
  26. S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett.91(24), 243501 (2007). [CrossRef]
  27. M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, and A. Gombert, “Functional microprism substrate for organic solar cells,” Thin Solid Films511, 628–633 (2006). [CrossRef]
  28. P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys.93(7), 3693–3723 (2003). [CrossRef]
  29. L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86(1), 487–496 (1999). [CrossRef]
  30. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009). [CrossRef]
  31. J. Jin, J. Lee, S. Jeong, S. Yang, J.-H. Ko, H.-G. Im, S.W. Baek, J.Y. Lee, and B.S. Bae, “High-performance hybrid plastic films: A robust electrode platform for thin-film optoelectronics,” Energy Environ. Sci., DOI: [CrossRef]
  32. X. H. Li, W. C. H. Choy, L. J. Huo, F. X. Xie, W. E. I. Sha, B. F. Ding, X. Guo, Y. F. Li, J. H. Hou, J. B. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012). [CrossRef] [PubMed]
  33. T. K. Mallick and P. C. Eames, “Design and fabrication of low concentrating second generation PRIDE concentrator,” Sol. Energy Mater. Sol. Cells91(7), 597–608 (2007). [CrossRef]
  34. K. Yoshioka, K. Endoh, M. Kobayashi, A. Suzuki, and T. Saitoh, “Design and properties of a refractive static concentrator module,” Sol. Energy Mater. Sol. Cells34(1-4), 125–131 (1994). [CrossRef]
  35. K. Yoshioka, A. Suzuki, and T. Saitoh, “Performance evaluation of two-dimensional compound elliptic lens concentrators using a yearly distributed insolation model,” Sol. Energy Mater. Sol. Cells57(1), 9–19 (1999). [CrossRef]
  36. S. Dal Zilio, K. Tvingstedt, O. Inganas, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelectron. Eng.86(4-6), 1150–1154 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited