OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S2 — Mar. 11, 2013
  • pp: A285–A294

Optimizing two-level hierarchical particles for thin-film solar cells

Shiwei Zhou, Xiaodong Hunang, Qing Li, and Yi Min Xie  »View Author Affiliations


Optics Express, Vol. 21, Issue S2, pp. A285-A294 (2013)
http://dx.doi.org/10.1364/OE.21.00A285


View Full Text Article

Enhanced HTML    Acrobat PDF (1927 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For the thin-film solar cells embedded with nanostructures at their rear dielectric layer, the shape and location of the nanostructures are crucial for higher conversion efficiency. A novel two-level hierarchical nanostructure (a sphere evenly covered with half truncated smaller spheres) can facilitate stronger intensity and wider scattering angles due to the coexistence of the merits of the nanospheres in two scales. We show in this article that the evolutionary algorithm allows for obtaining the optimal parameters of this two-scale nanostructure in terms of the maximization of the short circuit current density. In comparison with the thin-film solar cells with convex and flat metal back, whose parameters are optimized singly, the short circuit current density is improved by 7.48% and 10.23%, respectively. The exploration of such a two-level hierarchical nanostructure within an optimization framework signifies a new domain of study and allows to better identify the role of sophisticated shape in light trapping in the absorbing film, which is believed to be the main reason for the enhancement of short circuit current density.

© 2013 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Photovoltaics

History
Original Manuscript: September 11, 2012
Revised Manuscript: January 11, 2013
Manuscript Accepted: February 18, 2013
Published: February 26, 2013

Citation
Shiwei Zhou, Xiaodong Hunang, Qing Li, and Yi Min Xie, "Optimizing two-level hierarchical particles for thin-film solar cells," Opt. Express 21, A285-A294 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S2-A285


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science285(5428), 692–698 (1999). [CrossRef] [PubMed]
  2. B. Rech and H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys., A Mater. Sci. Process.69(2), 155–167 (1999). [CrossRef]
  3. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012). [CrossRef]
  4. P. Campbell and M. A. Green, “The limiting efficiency of silicon solar-cells under concentrated sunlight,” IEEE Trans. Electron. Dev.33(2), 234–239 (1986). [CrossRef]
  5. S. S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a:Si thin-film solar cell,” J. Phys. D Appl. Phys.40(3), 754–758 (2007). [CrossRef]
  6. C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys.89(12), 7722–7726 (2001). [CrossRef]
  7. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express17(25), 23058–23065 (2009). [CrossRef] [PubMed]
  8. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  10. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  11. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101, 104309 (2007). [CrossRef]
  12. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009). [CrossRef]
  13. M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012). [CrossRef]
  14. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  15. X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012). [CrossRef] [PubMed]
  16. M. P. Bendsøe and O. Sigmund, Topology Optimisation: Theory, Methods, and Applications (Springer, 2003).
  17. O. Sigmund and S. Torquato, “Composites with extremal thermal expansion coefficients,” Appl. Phys. Lett.69(21), 3203–3205 (1996). [CrossRef]
  18. Y. M. Xie and G. P. Steven, “A simple evolutionary procedure for structural optimization,” Comput. Struc.49(5), 885–896 (1993). [CrossRef]
  19. S. W. Zhou and Q. Li, “Design of three-dimensional periodic metamaterials for electromagnetic properties,” IEEE Trans. Microw. Theory Tech.58, 910–916 (2010). [CrossRef]
  20. S. W. Zhou, W. Li, Y. H. Chen, G. Y. Sun, and Q. Li, “Topology optimization for negative permeability metamaterials using level-set algorithm,” Acta Mater.59(7), 2624–2636 (2011). [CrossRef]
  21. X. Huang, Y. M. Xie, B. Jia, Q. Li, and S. W. Zhou, “Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity,” Struct. Multidisc. Optim.46(3), 385–398 (2012). [CrossRef]
  22. R. Storn and K. Price, “Differential Evolution – A simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim.11(4), 341–359 (1997). [CrossRef]
  23. A. H. Hielscher, A. D. Klose, and J. Beuthan, “Evolution strategies for optical tomographic characterization of homogeneous media,” Opt. Express7(13), 507–518 (2000). [CrossRef] [PubMed]
  24. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1996).
  25. P. Y. Chen, C. H. Chen, H. Wang, J. H. Tsai, and W. X. Ni, “Synthesis design of artificial magnetic metamaterials using a genetic algorithm,” Opt. Express16(17), 12806–12818 (2008). [CrossRef] [PubMed]
  26. L. F. Shen, Z. Ye, and S. L. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B68(3), 035109 (2003). [CrossRef]
  27. M. d’Avezac, J. W. Luo, T. Chanier, and A. Zunger, “Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors,” Phys. Rev. Lett.108(2), 027401 (2012). [CrossRef] [PubMed]
  28. N. Yamada and T. Nishikawa, “Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry,” Opt. Express18(S2Suppl 2), A126–A132 (2010). [CrossRef] [PubMed]
  29. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966). [CrossRef]
  30. http://www.lumerical.com .
  31. M. Yang, Z. P. Fu, F. Lin, and X. Zhu, “Incident angle dependence of absorption enhancement in plasmonic solar cells,” Opt. Express19(S4Suppl 4), A763–A771 (2011). [CrossRef] [PubMed]
  32. E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou, “Minimal discrete energy on the sphere,” Math. Res. Lett.1, 647–662 (1994).
  33. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys.106(7), 074901 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited