OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A324–A335

Periodic dielectric structures for light-trapping in InGaAs/GaAs quantum well solar cells

Sam Turner, Sudha Mokkapati, Greg Jolley, Lan Fu, Hark Hoe Tan, and Chennupati Jagadish  »View Author Affiliations

Optics Express, Vol. 21, Issue S3, pp. A324-A335 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2378 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study dielectric diffraction gratings for light-trapping in quantum well solar cells and compare their performance with plasmonic and Lambertian light-trapping structures. The optimum structural parameters are identified for symmetric uni-periodic, symmetric bi-periodic and asymmetric bi-periodic gratings. The enhancement in short-circuit current density from the quantum well region with respect to a reference cell with no diffraction grating is calculated. The ratio of this enhancement to the maximum achievable enhancement (i.e. no transmission losses) is 33%, 75% and 74%, respectively for these structures. The optimum asymmetric and symmetric bi-periodic structures perform closest to Lambertian light-trapping, while all three optimum grating structures outperform optimum plasmonic light-trapping. We show that the short-circuit current density from the quantum well region is further enhanced by incorporating a rear reflector.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Diffraction and Gratings

Original Manuscript: February 15, 2013
Revised Manuscript: March 21, 2013
Manuscript Accepted: March 22, 2013
Published: April 2, 2013

Sam Turner, Sudha Mokkapati, Greg Jolley, Lan Fu, Hark Hoe Tan, and Chennupati Jagadish, "Periodic dielectric structures for light-trapping in InGaAs/GaAs quantum well solar cells," Opt. Express 21, A324-A335 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. G. Anderson, “Ideal theory of quantum well solar cells,” J. Appl. Phys. 78(3), 1850–1861 (1995). [CrossRef]
  2. K. W. J. Barnham, I. M. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, “Quantum well solar cells,” Physica E 14(1-2), 27–36 (2002). [CrossRef]
  3. K. W. J. Barnham, G. Duggan, “A new approach to high-efficiency multi-band-gap solar cells,” J. Appl. Phys. 67(7), 3490–3493 (1990). [CrossRef]
  4. K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).
  5. J. P. Connolly, “Analytical Models of Bulk and Quantum Well Solar Cells and Relevance of the Radiative Limit,” in Advanced Solar Cell Materials, Technology, Modeling, and Simulation (IGI Global, 2013, pp. 59–77).
  6. K. W. J. Barnham, I. M. Ballard, B. C. Browne, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. C. Lynch, M. Mazzer, J. S. Roberts, C. Rohr, and T. N. D. Tibbits, “Recent Progress in Quantum Well Solar Cells,” in Nanotechnology for Photovoltaics (CRC Press, 2010, pp. 187–210).
  7. S. Mokkapati, K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012). [CrossRef]
  8. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  9. Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  10. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982). [CrossRef]
  11. Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  12. Lumerical, “FDTD Solutions Package,” (2012), retrieved http://www.Lumerical.com .
  13. NREL, “Reference Solar Spectral Irradiance: Air Mass 1.5,” (2012), retrieved http://rredc.nrel.gov/solar/spectra/am1.5/ .
  14. S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009). [CrossRef]
  15. A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” Proceedings of Photovoltaic Specialists Conference15th, 867–870 (1981).
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998, pp. 429–443).
  17. I. McKerracher, J. Wong-Leung, G. Jolley, F. Lan, H. H. Tan, C. Jagadish, “Selective Intermixing of InGaAs/GaAs Quantum Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 47(5), 577–590 (2011). [CrossRef]
  18. P. K. Bhattacharya, Properties of Lattice-Matched and Strained Indium Gallium Arsenide (Inspec/Iee, 1993) pp. 187–191.
  19. T. B. Bahder, “Eight-band k.p model of strained zinc-blende crystals,” Phys. Rev. B 41(17), 11992–12001 (1990). [CrossRef]
  20. I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001). [CrossRef]
  21. S. L. Chuang, Physics of Optoelectronic Devices (John Wiley & Sons, 1995, pp. 337–345).
  22. E. Wang, T. P. White, K. R. Catchpole, “Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells,” Opt. Express 20(12), 13226–13237 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited