OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A355–A362

Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells

Shouyi Xie, Zi Ouyang, Baohua Jia, and Min Gu  »View Author Affiliations


Optics Express, Vol. 21, Issue S3, pp. A355-A362 (2013)
http://dx.doi.org/10.1364/OE.21.00A355


View Full Text Article

Acrobat PDF (2361 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metal nanowire networks are emerging as next generation transparent electrodes for photovoltaic devices. We demonstrate the application of random silver nanowire networks as the top electrode on crystalline silicon wafer solar cells. The dependence of transmittance and sheet resistance on the surface coverage is measured. Superior optical and electrical properties are observed due to the large-size, highly-uniform nature of these networks. When applying the nanowire networks on the solar cells with an optimized two-step annealing process, we achieved as large as 19% enhancement on the energy conversion efficiency. The detailed analysis reveals that the enhancement is mainly caused by the improved electrical properties of the solar cells due to the silver nanowire networks. Our result reveals that this technology is a promising alternative transparent electrode technology for crystalline silicon wafer solar cells.

© 2013 OSA

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.6000) Materials : Semiconductor materials
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Photovoltaics

History
Original Manuscript: January 16, 2013
Revised Manuscript: March 22, 2013
Manuscript Accepted: March 22, 2013
Published: April 2, 2013

Citation
Shouyi Xie, Zi Ouyang, Baohua Jia, and Min Gu, "Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells," Opt. Express 21, A355-A362 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S3-A355


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2010).
  2. M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, 2003).
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  4. M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012). [CrossRef]
  5. X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012). [CrossRef] [PubMed]
  6. Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010). [CrossRef]
  7. N. F. Fahim, B. Jia, Z. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express20(S5Suppl 5), A694–A705 (2012). [CrossRef] [PubMed]
  8. A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: Up-conversion,” Sol. Energy Mater. Sol. Cells91(9), 829–842 (2007). [CrossRef]
  9. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater.23(13), 1482–1513 (2011). [CrossRef] [PubMed]
  10. L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano4(5), 2955–2963 (2010). [CrossRef] [PubMed]
  11. A. Sugianto, O. Breitenstein, B. S. Tjahjono, A. Lennon, L. Mai, and S. R. Wenham, “Impact of localized regions with very high series resistances on cell performance,” Prog. Photovolt. Res. Appl.20(4), 452–462 (2012). [CrossRef]
  12. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett.8(2), 689–692 (2008). [CrossRef] [PubMed]
  13. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Semitransparent organic photovoltaic cells with laminated top electrode,” Nano Lett.10(4), 1276–1279 (2010). [CrossRef] [PubMed]
  14. C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett.6(1), 75 (2011). [CrossRef] [PubMed]
  15. V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small7(18), 2621–2628 (2011). [CrossRef] [PubMed]
  16. A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Res.3(8), 564–573 (2010). [CrossRef]
  17. M. G. Kang and L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater.19(10), 1391–1396 (2007). [CrossRef]
  18. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater.19(4), 495–513 (2007). [CrossRef]
  19. Solarbuzz, “Solar market research and analysis” (2012), retrieved http://www.solarbuzz.com/going-solar/understanding/technologies .
  20. W. Gaynor, J.-Y. Lee, and P. Peumans, “Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes,” ACS Nano4(1), 30–34 (2010). [CrossRef] [PubMed]
  21. M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrode,” Adv. Mater.20, 6 (2008).
  22. B. E. Hardin, W. Gaynor, I. K. Ding, S.-B. Rim, P. Peumans, and M. D. McGehee, “Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells,” Org. Electron.12(6), 875–879 (2011). [CrossRef]
  23. L. E. Scriven, “Physics and applications of dip coating and spin coating,” MRS Online Proc. Library 121 (1988).
  24. T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater.2(3), 353–360 (2012). [CrossRef]
  25. Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012). [CrossRef]
  26. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  27. K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors—A status review,” Thin Solid Films102(1), 1–46 (1983). [CrossRef]
  28. D. Stauffer and A. Aharony, Introduction To Percolation Theory, 2nd ed. (Taylor & Francis, 1994).
  29. P. Heitjans and J. Kärger, Diffusion in Condensed Matter: Methods, Materials, Models (Springer-Verlag Berlin Heidelberg, 2005), Vol. 22.
  30. A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal-semiconductor systems,” J. Appl. Phys.36(10), 3212–3220 (1965). [CrossRef]
  31. D. A. Clugston and P. A. Basore, “PC1D version 5: 32-bit solar cell modeling on personal computers,” in Record of 26th IEEE Photovoltaic Specialists Conference, (Institute of Electrical and Electronics Engineers, 1997), pp. 207–210.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited