OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A363–A371

Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures

Christina Bauer and Harald Giessen  »View Author Affiliations


Optics Express, Vol. 21, Issue S3, pp. A363-A371 (2013)
http://dx.doi.org/10.1364/OE.21.00A363


View Full Text Article

Enhanced HTML    Acrobat PDF (1246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Solar cells are important in the area of renewable energies. Since it is expensive to produce solar-grade silicon [Electrochem. Soc. Interface 17, 30 (2008)], especially thin-film solar cells are interesting. However, the efficiency of such solar cells is low. Therefore, it is important to increase the efficiency. The group of Polman has shown that a periodic arrangement of metal particles is able to enhance the absorbance of light [Nano Lett. 11, 1760 (2011)]. However, a quasicrystalline arrangement of the metal particles is expected to enhance the light absorbance independent of the incident polar and azimuthal angles due to the more isotropic photonic bandstructure. In this paper, we compare the absorption enhancement of a quasiperiodic photonic crystal to that of a periodic photonic crystal. We indeed find that the absorption enhancement for the quasicrystalline arrangement shows such an isotropic behavior. This implies that the absorption efficiency of the solar cell is relatively constant during the course of the day as well as the year. This is particularly important with respect to power distribution, power storage requirements, and the stability of the electric grid upon massive use of renewable energy.

© 2013 OSA

OCIS Codes
(310.6860) Thin films : Thin films, optical properties
(350.6050) Other areas of optics : Solar energy
(050.5298) Diffraction and gratings : Photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: January 31, 2013
Revised Manuscript: March 23, 2013
Manuscript Accepted: March 26, 2013
Published: April 2, 2013

Citation
Christina Bauer and Harald Giessen, "Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures," Opt. Express 21, A363-A371 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S3-A363


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Verbruggen and V. Lauber, “Basic concepts for designing renewable electricity support aiming at a fullscale transition by 2050,” Energy Policy37(12), 5732–5743 (2009). [CrossRef]
  2. D. Fertl, “Germany: Nuclear power to be phased out by 2022,” http://www.greenleft.org.au/node/47834 (2011). Accessed: 23/08/2012.
  3. F. Trieb, “Trans-mediterranean interconnection for concentrating solar power,” Study report, German Aerospace Center (2006).
  4. M. Tao, “Inorganic photovoltaic solar cells: Silicon and beyond,” Electrochem. Soc. Interface17, 30–35 (2008).
  5. D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett.25(11), 647–648 (1974). [CrossRef]
  6. J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev.38(8), 1925–1934 (1991). [CrossRef]
  7. B. O’Regan and M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature353(6346), 737–740 (1991). [CrossRef]
  8. M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. C4(2), 145–153 (2003). [CrossRef]
  9. J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009). [CrossRef]
  10. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10(3), 1012–1015 (2010). [CrossRef] [PubMed]
  11. C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl.14(7), 629–641 (2006). [CrossRef]
  12. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996). [CrossRef]
  13. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95(18), 183503 (2009). [CrossRef]
  14. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  15. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys.104(12), 123102 (2008). [CrossRef]
  16. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011). [CrossRef]
  17. Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009). [CrossRef] [PubMed]
  18. W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012). [CrossRef]
  19. E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett.96(3), 031108 (2010). [CrossRef]
  20. S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett.92(17), 171114 (2008). [CrossRef]
  21. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater.21(34), 3504–3509 (2009). [CrossRef]
  22. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011). [CrossRef] [PubMed]
  23. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett.11(4), 1760–1765 (2011). [CrossRef] [PubMed]
  24. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012). [CrossRef]
  25. C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett.91(15), 151109 (2007). [CrossRef]
  26. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011). [CrossRef] [PubMed]
  27. Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20(10), 11466–11477 (2012). [CrossRef] [PubMed]
  28. P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, and P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron.12(6), 886–890 (2011). [CrossRef]
  29. S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett.86(20), 4688–4691 (2001). [CrossRef] [PubMed]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  31. A. Christ, “Optical properties of metallic photonic crystal structures,” Ph.D. thesis, Philipps-Universität Marburg (2005).
  32. C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep.2, 681 (2012). [CrossRef] [PubMed]
  33. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002). [CrossRef]
  34. M. J. Weber, Handbook of Optical Materials (CRC, 2003).
  35. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys.103(9), 093102 (2008). [CrossRef]
  36. C. Gueymard, “SMARTS2, Simple Model for the Atmospheric Radiative Transfer of Sunshine: Algorithms and performance assessment,” Technical Report FSEC-PF-270–95, Florida Solar Energy Center, Cocoa, FL (1995).
  37. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film silicon solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express16(19), 15238–15248 (2008). [CrossRef] [PubMed]
  38. The latitude and longitude of Germany,” http://www.travelmath.com/country/Germany . Accessed: 13/12/2012.
  39. H. Schwarz and S. Ying, “Urban photovoltaic potential,” in 2010 9th International Conference on Environment and Electrical Engineering (EEEIC) (2010), pp. 26–28. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited