OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A382–A391

Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure

Ronen Chriki, Avner Yanai, Joseph Shappir, and Uriel Levy  »View Author Affiliations


Optics Express, Vol. 21, Issue S3, pp. A382-A391 (2013)
http://dx.doi.org/10.1364/OE.21.00A382


View Full Text Article

Enhanced HTML    Acrobat PDF (2055 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an ultrathin solar cell architecture design which incorporates two periodic layers of metallic and dielectric gratings. Both layers couple the incident light to photonic and plasmonic modes, thus increasing absorption within the cell. The relative position between the two gratings is examined, and is shown to have significant impact on absorption. A lateral shift between the two layers introduces structural asymmetry, and enables coupling of the incident field to optically dark photonic modes. Furthermore, the lateral shift influences mode interactions. Current density enhancement is calculated under AM1.5G solar illumination, and is found to reach a value of 1.86. The structure proposed is optimized and compared to solar cells with a single layer of metallic or dielectric nanostructures.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(310.0310) Thin films : Thin films
(310.2790) Thin films : Guided waves
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Photovoltaics

History
Original Manuscript: December 18, 2012
Revised Manuscript: February 13, 2013
Manuscript Accepted: March 25, 2013
Published: April 9, 2013

Citation
Ronen Chriki, Avner Yanai, Joseph Shappir, and Uriel Levy, "Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure," Opt. Express 21, A382-A391 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S3-A382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Morton, “Solar energy: A new day dawning? Silicon valley sunrise,” Nature443(7107), 19–22 (2006). [CrossRef] [PubMed]
  2. M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics6(3), 130–132 (2012). [CrossRef]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  4. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater.22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  5. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancement,” Adv. Mater.21(34), 3504–3509 (2009). [CrossRef]
  6. Y. A. Akimov and W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics6(1), 155–161 (2011). [CrossRef]
  7. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011). [CrossRef] [PubMed]
  8. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011). [CrossRef] [PubMed]
  9. J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett.99(13), 131114 (2011). [CrossRef]
  10. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon on insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996). [CrossRef]
  11. H. R. Stuart and D. G. Hall, “Island effects in nanoparticle enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998). [CrossRef]
  12. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle induced light scattering for improved performance of quantum well solar cells,” Appl. Phys. Lett.93(9), 091107 (2008). [CrossRef]
  13. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010). [CrossRef]
  14. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008). [CrossRef] [PubMed]
  15. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells93(8), 1377–1382 (2009). [CrossRef]
  16. A. Crescitelli, A. Ricciardi, M. Consales, E. Esposito, C. Granata, V. Galdi, A. Cutolo, and A. Cusano, “Nanostructured metallo-dielectric quasi crystals: towards photonic-plasmonic resonance engineering,” Adv. Funct. Mater.22(20), 4389–4398 (2012). [CrossRef]
  17. I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, “Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer,” Opt. Express19(S1Suppl 1), A64–A71 (2011). [CrossRef] [PubMed]
  18. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk Plasmons,” Appl. Phys. Lett.92(5), 053110 (2008). [CrossRef]
  19. B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, and L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett.98(20), 201108 (2011). [CrossRef]
  20. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011). [CrossRef] [PubMed]
  21. V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano5, 10055–10064 (2011).
  22. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin film solar cells,” Appl. Phys. Lett.98(9), 093117 (2011). [CrossRef]
  23. H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19(S6Suppl 6), A1202–A1210 (2011). [CrossRef] [PubMed]
  24. D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express19(S2Suppl 2), A95–A107 (2011). [CrossRef] [PubMed]
  25. A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual interface grating for broadband absorption enhancement in thin film solar cells,” Phys. Rev. B85(11), 115449 (2012). [CrossRef]
  26. S. Hajimirza and J. Howell, “Inverse optimization of plasmonic and antireflective grating thin film PV cells,” J. Phys. Conf. Ser.369, 012015 (2012). [CrossRef]
  27. L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B84(23), 235402 (2011). [CrossRef]
  28. A. Yanai and U. Levy, “Tunability of reflection and transmission spectra of two periodically corrugated metallic plates, obtained by control of the interactions between plasmonic and photonic modes,” J. Opt. Soc. Am. B27(8), 1523–1529 (2010). [CrossRef]
  29. V. Ganapati, O. D. Miller, and E. Yablonovitch, “Spontaneous symmetry breaking in the optimization of subwavelength solar cell textures for light trapping,” in Photovoltaic Specialist Conference, 38th IEEE, 001572–001576 (IEEE, 2012). [CrossRef]
  30. V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express17(24), 21897–21909 (2009). [CrossRef] [PubMed]
  31. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett.8(8), 2171–2175 (2008). [CrossRef] [PubMed]
  32. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B77(11), 115425 (2008). [CrossRef]
  33. W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron.10(3), 478–483 (2004). [CrossRef]
  34. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995). [CrossRef]
  35. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A13(4), 779–784 (1996). [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  37. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995). [CrossRef]
  38. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  39. National renewable energy laboratory (NREL), National solar radiation database, 1991–2010 update. http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited