OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A392–A400

FDTD modeling of solar energy absorption in silicon branched nanowires

Christin Lundgren, Rene Lopez, Joan Redwing, and Kathleen Melde  »View Author Affiliations


Optics Express, Vol. 21, Issue S3, pp. A392-A400 (2013)
http://dx.doi.org/10.1364/OE.21.00A392


View Full Text Article

Enhanced HTML    Acrobat PDF (2261 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Thin film nanostructured photovoltaic cells are increasing in efficiency and decreasing the cost of solar energy. FDTD modeling of branched nanowire 'forests' are shown to have improved optical absorption in the visible and near-IR spectra over nanowire arrays alone, with a factor of 5 enhancement available at 1000 nm. Alternate BNW tree configurations are presented, achieving a maximum absorption of over 95% at 500 nm.

© 2013 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(350.6050) Other areas of optics : Solar energy

ToC Category:
Photovoltaics

History
Original Manuscript: December 27, 2012
Revised Manuscript: April 1, 2013
Manuscript Accepted: April 2, 2013
Published: April 9, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Christin Lundgren, Rene Lopez, Joan Redwing, and Kathleen Melde, "FDTD modeling of solar energy absorption in silicon branched nanowires," Opt. Express 21, A392-A400 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S3-A392


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, and H. M. Upadhyaya, “Solar photovoltaic electricity: Current status and future prospects,” Sol. Energy85(8), 1580–1608 (2011). [CrossRef]
  2. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005). [CrossRef]
  3. E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  4. E. Barraud, “New world record efficiency for thin film silicon solar cells,” http://actu.epfl.ch/news/new- world-record-efficiency-for-thin-film-silicon-/
  5. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010). [PubMed]
  6. M. J. Bierman and S. Jin, “Potential applications of hierarchical branching nanowires in solar energy conversion,” Energy Environ. Sci.2(10), 1050–1059 (2009). [CrossRef]
  7. C. Cheng and H. J. Fan, “Branched nanowires: Synthesis and energy applications,” Nano Today7(4), 327–343 (2012). [CrossRef]
  8. D. Wang, F. Qian, C. Yang, Z. H. Zhong, and C. M. Lieber, “Rational Growth of Branched and Hyperbranched Nanowire Structures,” Nano Lett.4(5), 871–874 (2004). [CrossRef]
  9. K. A. Dick, K. Deppert, M. W. Larsson, T. Mårtensson, W. Seifert, L. R. Wallenberg, and L. Samuelson, “Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events,” Nat. Mater.3(6), 380–384 (2004). [CrossRef] [PubMed]
  10. C. Yan, X. P. Li, K. Zhou, A. Pan, P. Werner, S. L. Mensah, A. T. Vogel, and V. Schmidt, “Heteroepitaxial growth of GaSb nanotrees with an ultra-low reflectivity in a broad spectral range,” Nano Lett.12(4), 1799–1805 (2012). [CrossRef] [PubMed]
  11. K. Sun, Y. Jing, C. Li, X. F. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. C. Zhou, Y. Bando, Z. W. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012). [CrossRef] [PubMed]
  12. Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. D. Yang, “Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties,” Nano Lett.12(3), 1678–1682 (2012). [CrossRef] [PubMed]
  13. H. P. Yoon, Y. A. Yuwen, C. E. Kendrick, G. D. Barber, N. J. Podraza, J. M. Redwing, T. E. Mallouk, C. R. Wronski, and T. S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett.96(21), 213503 (2010). [CrossRef]
  14. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition, 3rd ed. (Artech House, 2005).
  16. S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared Plasmonics with Indium-Tin-Oxide Nanorod Arrays,” ACS Nano5(11), 9161–9170 (2011). [CrossRef] [PubMed]
  17. A. Deinega and S. John, “Effective optical response of silicon to sunlight in the finite-difference time-domain method,” Opt. Lett.37(1), 112–114 (2012). [CrossRef] [PubMed]
  18. S. G. Johnson, “Materials in Meep,” http://ab-initio.mit.edu/wiki/index.php/Material_dispersion_in_Meep .
  19. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells92(11), 1305–1310 (2008). [CrossRef]
  20. L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  21. K.-T. Park, Z. Guo, H.-D. Um, J.-Y. Jung, J. M. Yang, S. K. Lim, Y. S. Kim, and J.-H. Lee, “Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics,” Opt. Express19(S1Suppl 1), A41–A50 (2011). [CrossRef] [PubMed]
  22. M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films496(2), 505–514 (2006). [CrossRef]
  23. P. Han, Y. W. Chen, and X.-C. Zhang, “Application of Silicon Micropyramid Structures for Antireflection of Terahertz Waves,” IEEE J. Sel. Top. Quantum Electron.16(1), 338–343 (2010).
  24. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  25. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited