OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A412–A418

Conversion efficiency of broad-band rectennas for solar energy harvesting applications

Edgar Briones, Javier Alda, and Francisco Javier González  »View Author Affiliations

Optics Express, Vol. 21, Issue S3, pp. A412-A418 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (855 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical antennas have been proposed as an alternative option for solar energy harvesting. In this work the power conversion efficiency of broadband antennas, log-periodic, square-spiral, and archimedian-spiral antennas, coupled to Metal-Insulator-Metal and Esaki rectifying diodes has been obtained from both theoretical and numerical simulation perspectives. The results show efficiencies in the order of 10−6 to 10−9 for these rectifying mechanisms, which is very low for practical solar energy harvesting applications. This is mainly caused by the poor performance of diodes at the given frequencies and also due to the antenna-diode impedance mismatch. If only losses due to antenna-diode impedance mismatch are considered an efficiency of about 10−3 would be obtained. In order to make optical antennas useful for solar energy harvesting new rectification devices or a different harvesting mechanism should be used.

© 2013 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(040.5570) Detectors : Quantum detectors
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: January 23, 2013
Revised Manuscript: February 28, 2013
Manuscript Accepted: February 28, 2013
Published: April 16, 2013

Edgar Briones, Javier Alda, and Francisco Javier González, "Conversion efficiency of broad-band rectennas for solar energy harvesting applications," Opt. Express 21, A412-A418 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Guy, Consolmagno and Martha W. Schaefer, Worlds Apart: A Textbook in Planetary Sciences (Benjamin Cummings, 1994).
  2. A. Luque, “Solar thermovoltaics: combining solar thermal and photovoltaics,” AIP Conf. Proc.890, 3–16 (2007). [CrossRef]
  3. L. Fraas and L. Minkin, “TPV History from 1990 to present and future trends,” AIP Conf. Proc.890, 17–23 (2007). [CrossRef]
  4. M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energy79(1), 78–85 (2005). [CrossRef]
  5. K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures,” Energies2(3), 504–530 (2009). [CrossRef]
  6. J. Rabaey, Low Power Design Essentials (Springer, 2009).
  7. R. Corkish, M. A. Green, and T. Puzzer, “Solar energy collection by antennas,” Sol. Energy73(6), 395–401 (2002). [CrossRef]
  8. D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng.132(1), 011014 (2010). [CrossRef]
  9. G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy1(3), 494–502 (2012). [CrossRef]
  10. Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy88, 163–174 (2013). [CrossRef]
  11. F. J. González and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol.46(5), 418–428 (2005). [CrossRef]
  12. C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol.39(3), 123–183 (1998). [CrossRef]
  13. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, Inc., 1996).
  14. C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, and F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt.36(25), 6485–6490 (1997). [CrossRef] [PubMed]
  15. J. A. Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane, and Z. B. Popovic, “Recycling ambient microwave energy with broad-band rectenna arrays,” IEEE Trans. Microw. Theory Tech.52(3), 1014–1024 (2004). [CrossRef]
  16. M. Heiblum, W. Shihyuan, J. R. Whinnery, and T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron.14(3), 159–169 (1978). [CrossRef]
  17. I. Wilke, Y. Oppliger, W. Herrmann, and F. K. Kneubuehl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process.58, 329–341 (1994). [CrossRef]
  18. J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B27(1), 11–14 (2009). [CrossRef]
  19. B. J. Eliasson, “Metal-insulator-metal diodes for solar energy conversion,” Ph.D. Thesis, University of Colorado (2001).
  20. S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, and M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Radio Frequency Integrated Circuits Symposium, 171–174 (2007). [CrossRef]
  21. W. Fan, M. C. Dolph, J. Lu, and A. Wolf, “Metal-oxide-oxide-metal granular tunnel diodes fabricated by anodization,” Appl. Phys. Lett.99(25), 252101 (2011). [CrossRef]
  22. J. N. Schulman and D. H. Chow, “Sb-heterostructure interband backward diodes,” IEEE Electron Device Lett.21(7), 353–355 (2000). [CrossRef]
  23. J. N. Schulman, E. T. Croke, D. H. Chow, H. L. Dunlap, K. S. Holabird, M. A. Morgan, and S. Weinreb, “Quantum tunneling Sb-heterostructure millimeter-wave diodes,” in Proceedings of IEEE International Electron Devices Meeting (2001), pp. 765–7667.
  24. N. Su, R. Rajavel, P. Deelman, J. N. Schulman, and P. Fay, “Sb-heterostructure millimeter-wave detectors with reduced capacitance and noise equivalent power,” IEEE Electron Device Lett.29(6), 536–539 (2008). [CrossRef]
  25. P. Fay, J. N. Schulman, S. Thomas, D. H. Chow, Y. K. Boegeman, and K. S. Holabird, “High-performance antimonide-based heterostructure backward diodes for millimeter-wave detection,” IEEE Electron Device Lett.23(10), 585–587 (2002). [CrossRef]
  26. J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys.34(6), 1793–1803 (1963). [CrossRef]
  27. L. Esaki, “New phenomenon in narrow germanium p-n junctions,” Phys. Rev.109(2), 603–604 (1958). [CrossRef]
  28. M. Nagae, “Response time of metal-insulator-metal tunnel junctions,” Jpn. J. Appl. Phys.11(11), 1611–1621 (1972). [CrossRef]
  29. C. Fumeaux, J. Alda, and G. D. Boreman, “Lithographic antennas at visible frequencies,” Opt. Lett.24(22), 1629–1631 (1999). [CrossRef] [PubMed]
  30. S. M. Sze and R. M. Ryder, “The nonlinearity of the reverse current-voltage characteristics of a p-n junction near avalanche breakdown,” Bell Syst. Tech. J.46(6), 1135–1139 (1967).
  31. A. Sanchez, C. F. Davis, K. C. Liu, and A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys.49(10), 5270–5277 (1978). [CrossRef]
  32. P. Periasamy, J. J. Berry, A. A. Dameron, J. D. Bergeson, D. S. Ginley, R. P. O’Hayre, and P. A. Parilla, “Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique,” Adv. Mater.23(27), 3080–3085 (2011). [CrossRef] [PubMed]
  33. S. Y. Wang, T. Izawa, and T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6μm,” Appl. Phys. Lett.27(9), 481–483 (1975). [CrossRef]
  34. B. Berland, L. Simpson, G. Nuebel, T. Collins, and B. Lanning, “Optical rectenna for direct conversion of sunlight to electricity,” in Proceedings of the National Center for Photovoltaics Program Review Meeting (NREL, 2001), pp. 323–324.
  35. A. M. Marks, “Lighthing devices with quantum electric/ligth power converters,” USA Patent no. 4,972,094 (1986).
  36. S. Grover and G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. of Photovolt.1(1), 78–83 (2011). [CrossRef]
  37. P. M. Krenz, B. Tiwari, G. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, and W. Porod, “Response increase of IR antenna-coupled thermocouple using impedance matching,” IEEE J. Quantum Electron.48(5), 659–664 (2012). [CrossRef]
  38. F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol.52(1), 48–51 (2009). [CrossRef]
  39. B. Tiwari, J. A. Bean, G. Szakmany, G. H. Bernstein, P. Fay, and W. Porod, “Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B27(5), 2153–2160 (2009). [CrossRef]
  40. J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron.47(1), 126–135 (2011). [CrossRef]
  41. M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy39(1), 27–32 (2012). [CrossRef]
  42. Garret Moddel, Zixu Zhu, and Sachit Grover, “Solar power conversion using diodes coupled to antennas,” SPIE Newsroom (September 6, 2011).
  43. S. Joshi, Z. Zhu, S. Grover, and G. Moddel, “Infrared optical response of geometric diode rectenna solar cells,” in Proceedings of IEEE Photovoltaic Specialists Conference (PVSC, 2012), pp. 2976–2978. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited