OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A419–A429

The role of propagating modes in silver nanowire arrays for transparent electrodes

Tongchuan Gao and Paul W. Leu  »View Author Affiliations

Optics Express, Vol. 21, Issue S3, pp. A419-A429 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2142 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silver nanowires have been shown to demonstrate enhanced transmission and promising potential for next-generation transparent electrodes. In this paper, we systematically investigated the electrical and optical properties of 1D and 2D silver nanowire arrays as a function of diameter and pitch and compared their performance to that of silver thin films. Silver nanowires were found to exhibit enhanced transmission over thin films due to propagating resonance modes between nanowires. We evaluated the angular dependence and dispersion relation of these propagating modes and demonstrate that larger nanowire diameters and pitches are favored for achieving higher solar transmission at a particular sheet resistance. Silver nanowires may achieve achieve solar transmission > 90% with sheet resistances of a few Ω/sq and figure of merit σdc/σop > 1000.

© 2013 OSA

OCIS Codes
(160.2100) Materials : Electro-optical materials
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: January 14, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 4, 2013
Published: April 17, 2013

Tongchuan Gao and Paul W. Leu, "The role of propagating modes in silver nanowire arrays for transparent electrodes," Opt. Express 21, A419-A429 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. G. Granqvist, A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002). [CrossRef]
  2. A. Kumar, C. Zhou, “The race to replace tin-doped indium oxide: which material will win?,” ACS Nano 4, 11–14 (2010). [CrossRef] [PubMed]
  3. A. C. Tolcin, “Indium,” USGS Mineral Commodity Summary (2011).
  4. T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films 516, 5822–5828 (2008). [CrossRef]
  5. Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001). [CrossRef]
  6. A. R. Madaria, A. Kumar, F. N. Ishikawa, C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010). [CrossRef]
  7. X. Wang, L. Zhi, K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2008). [CrossRef]
  8. S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010). [CrossRef]
  9. M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006). [CrossRef]
  10. C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, H. Deng, “Multiphoton route to ZnO nanowire lasers,” Opt. Lett. 31, 3345–3347 (2006). [CrossRef] [PubMed]
  11. Y. Zhou, L. Hu, G. Grüner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88, 123109 (2006). [CrossRef]
  12. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009). [CrossRef] [PubMed]
  13. L. Hu, H. S. Kim, J. Lee, P. Peumans, Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010). [CrossRef] [PubMed]
  14. P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011). [CrossRef]
  15. J. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008). [CrossRef] [PubMed]
  16. Y. C. Lu, K. S. Chou, “Tailoring of silver wires and their performance as transparent conductive coatings,” Nanotechnology 21, 215707 (2010). [CrossRef] [PubMed]
  17. S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012). [CrossRef] [PubMed]
  18. S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).
  19. S. De, P. J. King, P. E. Lyons, U. Khan, J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010). [CrossRef] [PubMed]
  20. J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Letters,  123138–3144 (2012). [CrossRef] [PubMed]
  21. P. B. Catrysse, S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10, 2944–2949 (2010). [CrossRef] [PubMed]
  22. P. B. Catrysse, S. Fan “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophoton. 2 (1), 021790 (2008). [CrossRef]
  23. J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999). [CrossRef]
  24. K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” Antennas and Propagation, IEEE Transactions on 14, 302–307 (1966). [CrossRef]
  25. A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” Electromagnetic Compatibility, IEEE Transactions on EMC-22, 191–202 (1980). [CrossRef]
  26. E. D. Palik, G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).
  27. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  28. “Solar spectral irradiance: Air mass 1.5”.
  29. B. R. Cooper, H. Ehrenreich, H. R. Philipp, “Optical properties of noble metals. II.,” Phys. Rev. 138, A494–A507 (1965). [CrossRef]
  30. D. Lide, CRC Handbook of Chemistry and Physics (CRC press, 2012).
  31. A. J. McAlister, E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132, 1599–1602 (1963). [CrossRef]
  32. E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000). [CrossRef]
  33. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001). [CrossRef] [PubMed]
  34. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  35. M. W. Rowell, M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4, 131–134 (2011). [CrossRef]
  36. M. Dressel, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002). [CrossRef]
  37. P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited