OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A450–A459

Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells

S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, and F. Lederer  »View Author Affiliations


Optics Express, Vol. 21, Issue S3, pp. A450-A459 (2013)
http://dx.doi.org/10.1364/OE.21.00A450


View Full Text Article

Enhanced HTML    Acrobat PDF (1224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photon management aims at optimizing the solar cell efficiency by, e.g., incorporating supporting optical nanostructures for absorption enhancement. Their geometrical design, however, is usually a compromise since requirements in different spectral domains need to be accommodated. This issue can be mitigated if multiple optical nanostructures are integrated. Here, we present a photon management scheme that combines the benefits of a randomly textured surface and an opaline photonic crystal. Moreover, upon considering the device with an increasing complexity, we show that a structure that respects the mutual fabrication constraints has the best performance, i.e., a device where the photonic crystal is not perfect but to some extent amorphous as enforced by the presence of the texture.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(290.0290) Scattering : Scattering
(310.0310) Thin films : Thin films
(350.6050) Other areas of optics : Solar energy

ToC Category:
Light Trapping in Solar Cells

History
Original Manuscript: February 5, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 25, 2013
Published: April 22, 2013

Virtual Issues
Renewable Energy and the Environment (2013) Optics Express

Citation
S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, and F. Lederer, "Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells," Opt. Express 21, A450-A459 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S3-A450


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells90, 1189–1207 (2006). [CrossRef]
  2. A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4 : Er3+ up-converting phosphors for enhanced nearinfrared silicon solar cell response,” Appl. Phys. Lett.86, 013505 (2005). [CrossRef]
  3. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29, 300–305 (1982). [CrossRef]
  4. R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, and D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett.101, 103903 (2012). [CrossRef]
  5. S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express18, 4260–4274 (2010). [CrossRef] [PubMed]
  6. S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express19, 25729–25740 (2011). [CrossRef]
  7. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus lambertian limits in thin film silicon solar cells with 1d and 2d periodic patterns,” Opt. Express20, A224–A244 (2012). [CrossRef] [PubMed]
  8. L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, and S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett.100, 223902 (2012). [CrossRef]
  9. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys.104, 123102 (2008). [CrossRef]
  10. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  11. S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells94, 1481–1486 (2010). [CrossRef]
  12. F.-J. Haug, T. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys.109, 084516 (2011). [CrossRef]
  13. P. Bermel, C. Luo, L. Zeug, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cells efficiencies with photonic crystals,” Opt. Express15, 16986–17000 (2007). [CrossRef] [PubMed]
  14. A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express17, 8439–8446 (2009). [CrossRef] [PubMed]
  15. S. B. Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett.100, 053113 (2012). [CrossRef]
  16. R. B. Wehrspohn and J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt14, 024003 (2012). [CrossRef]
  17. J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, and R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater.23, 3896–3900 (2011). [CrossRef] [PubMed]
  18. J. Üpping, R. Salzer, M. Otto, T. Beckers, L. Steidl, R. Zentel, R. Carius, and R. B. Wehrspohn, “Transparent conductive oxide photonic crystals on textured substrates,” Photonics Nanostruct. Fund. Appl.9, 31–34 (2011). [CrossRef]
  19. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11, 1017–1022 (2012). [PubMed]
  20. A. Hoffmann, IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany (optical data can be provided upon request, contact a.hoffmann@fz-juelich.de).
  21. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front zno:al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101, 074903 (2007). [CrossRef]
  22. M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” in Proc. SPIE 8438, Photonics for Solar Energy Systems IV, 843817 (2012). [CrossRef]
  23. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71, 811–818 (1981). [CrossRef]
  24. L. Li, “New formulation of the fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A14, 2758–2767 (1997). [CrossRef]
  25. A. Donges, “The coherence length of black-body radiation,” Eur. J. Phys.19, 245–249 (1998). [CrossRef]
  26. ASTM Standard G173-03 URL: http://www.astm.org .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited