OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A469–A474

Effect of polymer morphology on P3HT-based solid-state dye sensitized solar cells: an ultrafast spectroscopic investigation

R. Sai Santosh Kumar, G. Grancini, A. Petrozza, A. Abrusci, H. J. Snaith, and G. Lanzani  »View Author Affiliations


Optics Express, Vol. 21, Issue S3, pp. A469-A474 (2013)
http://dx.doi.org/10.1364/OE.21.00A469


View Full Text Article

Enhanced HTML    Acrobat PDF (1211 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Solid-state dye sensitized solar cell devices are fabricated with poly(3-hexylthiophene) (P3HT) as the hole transporting layer. Upon annealing treatment we obtained ≈70% increase in the device efficiency compared to un-annealed devices. Our investigation, by means of ultrafast transient absorption spectroscopic characterization, correlates the increased device performances to a more efficient hole-transfer at the dye/polymer interface in the thermally treated P3HT.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.5470) Materials : Polymers
(320.7150) Ultrafast optics : Ultrafast spectroscopy
(350.6050) Other areas of optics : Solar energy

ToC Category:
Dye-Sensitized Solar Cells

History
Original Manuscript: February 12, 2013
Revised Manuscript: March 24, 2013
Manuscript Accepted: March 27, 2013
Published: April 22, 2013

Virtual Issues
Renewable Energy and the Environment (2013) Optics Express

Citation
R. Sai Santosh Kumar, G. Grancini, A. Petrozza, A. Abrusci, H. J. Snaith, and G. Lanzani, "Effect of polymer morphology on P3HT-based solid-state dye sensitized solar cells: an ultrafast spectroscopic investigation," Opt. Express 21, A469-A474 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S3-A469


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Guang Diau, C. Yu Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte Exceed 12 percent efficiency,” Science324, 634–639 (2011).
  2. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev.110(11), 6595–6663 (2010). [CrossRef] [PubMed]
  3. M. Grätzel, “Photoelectrochemical cells,” Nature414(6861), 338–344 (2001). [CrossRef] [PubMed]
  4. H. J. Snaith and L. Schmidt-Mende, “Advances in liquid-electrolyte and solid-State dye-sensitized solar cells,” Adv. Mater.19(20), 3187–3200 (2007). [CrossRef]
  5. M. Grätzel, U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, and H. Spreitzer, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature395(6702), 583–585 (1998). [CrossRef]
  6. J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. L. Cevey-Ha, C. Yi, M. K. Nazeeruddin, and M. Grätzel, “Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells,” J. Am. Chem. Soc.133(45), 18042–18045 (2011). [CrossRef] [PubMed]
  7. D. Poplavskyy and J. Nelson, “Nondispersive hole transport in amorphous films of methoxy-spirofluorenearylamine organic compounds,” J. Appl. Phys.93(1), 341–346 (2003). [CrossRef]
  8. I.-K. Ding, J. Melas-Kyriazi, N.-L. Cevey-Ha, K. G. Chittibabu, S. M. Zakeeruddin, M. Grätzel, and M. D. McGehee, “Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading,” Org. Electron.11(7), 1217–1222 (2010). [CrossRef]
  9. G. K. Mor, S. Kim, M. Paulose, O. K. Varghese, K. Shankar, J. Basham, and C. A. Grimes, “Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells,” Nano Lett.9(12), 4250–4257 (2009). [CrossRef] [PubMed]
  10. R. Zhu, C. Y. Jiang, B. Liu, and S. Ramakrishna, “Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye,” Adv. Mater.21(9), 994–1000 (2009). [CrossRef]
  11. A. Abrusci, R. S. S. Kumar, M. Al-Hashimi, M. Heeney, A. Petrozza, and H. J. Snaith, “Influence of ion induced local coulomb field and polarity on charge generation and efficiency in poly (3-Hexylthiophene) -based solid-state dye-sensitized solar cells,” Adv. Funct. Mater.21(13), 2571–2579 (2011).
  12. W. Zhang, Y. Cheng, X. Yin, and B. Liu, “Solid-State Dye-Sensitized Solar Cells with Conjugated polymers as Hole-Transporting Materials,” Macromol. Chem. Phys.212(1), 15–23 (2011). [CrossRef]
  13. L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, K. M. Karlsson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, “Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells,” Phys. Chem. Chem. Phys.14(2), 779–789 (2011). [CrossRef] [PubMed]
  14. G. Grancini, R. S. S. Kumar, M. Maiuri, J. Fang, W. T. S. Huck, M. Alcocer, G. Lanzani, A. Petrozza, G. Cerullo, and H. J. Snaith, “Panchromatic “dye-doped” polymer solar cells: from femtosecond energy relays to enhanced photo-response,” J. Chem Phys. Lett.4(3), 442–447 (2013). [CrossRef]
  15. J. Cabanillas-Gonzalez, G. Grancini, and G. Lanzani, “Pump-probe spectroscopy in organic semiconductors: monitoring fundamental processes of relevance in optoelectronics,” Adv. Mater.23(46), 5468–5485 (2011). [CrossRef] [PubMed]
  16. R. S. S. Kumar, L. Lüer, D. Polli, M. Garbugli, and G. Lanzani, “Primary photo-events in a metastable photomerocyanine,” Opt. Mater. Express1(2), 293–304 (2011). [CrossRef]
  17. I. A. Howard and F. Laquai, “Optical probes of charge generation and recombination in bulk heterojunction organic solar cells,” Macromol. Chem. Phys.211(19), 2063–2070 (2010). [CrossRef]
  18. G. Grancini, R. S. Santosh Kumar, A. Abrusci, H.-L. Yip, C.-Z. Li, A.-K. Y. Jen, G. Lanzani, and H. J. Snaith, “Boosting infrared light harvesting by molecular functionalization of metal oxide/polymer interfaces in efficient hybrid solar cells,” Adv. Funct. Mater.22(10), 2160–2166 (2012). [CrossRef]
  19. A. Listorti, B. O’Regan, and J. R. Durrant, “Electron transfer dynamics in dye-sensitized solar cells,” Chem. Mater.23(15), 3381–3399 (2011). [CrossRef]
  20. M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett.11(2), 438–445 (2011). [CrossRef] [PubMed]
  21. T. Horiuchi, H. Miura, and S. Uchida, “Highly efficient metal-free organic dyes for dye-sensitized solar cells,” J. Photochem. Photobiol. A164(1-3), 29–32 (2004). [CrossRef]
  22. H. Snaith, “How should you measure your excitonic solar cells?” Energy Environ. Sci.5(4), 6513–6520 (2012). [CrossRef]
  23. R. Jose, A. Kumar, V. Thavasi, and S. Ramakrishna, “Conversion efficiency versus sensitizer for electrospun TiO2 nanorod electrodes in dye-sensitized solar cells,” Nanotechnology19(42), 424004 (2008). [CrossRef]
  24. X. M. Jiang, R. Österbacka, O. Korovyanko, C. P. An, B. Horovitz, R. A. J. Janssen, and Z. V. Vardeny, “Spectroscopic studies of photoexcitations in regioregular and regiorandom polythiophene films,” Adv. Funct. Mater.12(9), 587–597 (2002). [CrossRef]
  25. R. A. Marsh, J. M. Hodgkiss, S. Albert-Seifried, and R. H. Friend, “Effect of annealing on P3HT:PCBM charge transfer and nanoscale morphology probed by ultrafast spectroscopy,” Nano Lett.10(3), 923–930 (2010). [CrossRef] [PubMed]
  26. J. Kirkpatrick, P. E. Keivanidis, A. Bruno, F. Ma, S. A. Haque, A. Yarstev, V. Sundstrom, and J. Nelson, “Ultrafast transient optical studies of charge pair generation and recombination in poly-3-hexylthiophene(P3ht):[6,6]phenyl C61 butyric methyl acid ester (PCBM) blend films,” J. Phys. Chem. B115(51), 15174–15180 (2011). [CrossRef] [PubMed]
  27. V. D. Mihailetchi, H. Xie, B. de Boer, L. J. A. Koster, and P. W. M. Blom, “Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells,” Adv. Funct. Mater.16(5), 699–708 (2006). [CrossRef]
  28. C. Goh, S. R. Scully, and M. D. McGehee, “Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells,” J. Appl. Phys.101(11), 114503 (2007). [CrossRef]
  29. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater.5(3), 197–203 (2006). [CrossRef]
  30. W. H. Howie, F. Claeyssens, H. Miura, and L. M. Peter, “Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes,” J. Am. Chem. Soc.130(4), 1367–1375 (2008). [CrossRef] [PubMed]
  31. E. V. Canesi, M. Binda, A. Abate, S. Guarnera, L. Moretti, V. D'Innocenzo, R. S. S. Kumar, C. Bertarelli, A. Abrusci, H. Snaith, A. Calloni, A. Brambilla, F. Ciccacci, S. Aghion, F. Moia, R. Ferragut, C. Melis, G. Malloci, A. Mattoni, G. Lanzani, and A. Petrozza, “The effect of selective interactions at the interface of polymer–oxide hybrid solar cells,” Energy Environ. Sci.5(10), 9068–9076 (2012). [CrossRef]
  32. W. C. Tsoi, S. J. Spencer, L. Yang, A. M. Ballantyne, P. G. Nicholson, A. Turnbull, A. G. Shard, C. E. Murphy, D. D. C. Bradley, J. Nelson, and J.-S. Kim, “Effect of crystallization on the electronic energy levels and thin film morphology of P3HT:PCBM Blends,” Macromolecules44(8), 2944–2952 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited