OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S4 — Jul. 1, 2013
  • pp: A616–A630

First-principle calculation of solar cell efficiency under incoherent illumination

Michaël Sarrazin, Aline Herman, and Olivier Deparis  »View Author Affiliations


Optics Express, Vol. 21, Issue S4, pp. A616-A630 (2013)
http://dx.doi.org/10.1364/OE.21.00A616


View Full Text Article

Enhanced HTML    Acrobat PDF (2201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Because of the temporal incoherence of sunlight, solar cells efficiency should depend on the degree of coherence of the incident light. However, numerical computation methods, which are used to optimize these devices, fundamentally consider fully coherent light. Hereafter, we show that the incoherent efficiency of solar cells can be easily analytically calculated. The incoherent efficiency is simply derived from the coherent one thanks to a convolution product with a function characterizing the incoherent light. Our approach is neither heuristic nor empiric but is deduced from first-principle, i.e. Maxwell’s equations. Usually, in order to reproduce the incoherent behavior, statistical methods requiring a high number of numerical simulations are used. With our method, such approaches are not required. Our results are compared with those from previous works and good agreement is found.

© 2013 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(040.5350) Detectors : Photovoltaic
(300.6170) Spectroscopy : Spectra
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Photovoltaics

History
Original Manuscript: March 14, 2013
Revised Manuscript: May 8, 2013
Manuscript Accepted: May 9, 2013
Published: May 23, 2013

Citation
Michaël Sarrazin, Aline Herman, and Olivier Deparis, "First-principle calculation of solar cell efficiency under incoherent illumination," Opt. Express 21, A616-A630 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S4-A616


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Tsakalakos, Nanotechnology for Photovoltaics (CRC, 2010). [CrossRef]
  2. J. Nelson, The Physics of Solar Cells (Imperial College, 2003). [CrossRef]
  3. M. Zeman, R.A.C.M.M. van Swaaij, J. Metselaar, and R.E.I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys.88, 6436–6443 (2000). [CrossRef]
  4. P. Campbell and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62, 243–249 (1987). [CrossRef]
  5. E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE29, 300–305 (1982).
  6. O. Deparis, J.P. Vigneron, O. Agustsson, and D. Decroupet, “Optimization of photonics for corrugated thin-film solar cells,” J. Appl. Phys.106, 094505 (2009). [CrossRef]
  7. J. Gjessing, A.S. Sudbø, and E.S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys.110, 033104 (2011). [CrossRef]
  8. A. Herman, C. Trompoukis, V. Depauw, O. El Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys.112, 113107 (2012). [CrossRef]
  9. K.S. Kunz and R.J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, 1993).
  10. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  11. M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71, 811–818 (1981). [CrossRef]
  12. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B67, 085415 (2003). [CrossRef]
  13. J.P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE6128, 61281G (2006). [CrossRef]
  14. J. P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, and A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy61, 21–27 (1995). [CrossRef]
  15. A. Jin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells92, 1689–1696 (2008). [CrossRef]
  16. L. Zhao, Y. Zuo, C. Zhou, H. Li, W. Diao, and W. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy84, 110–115 (2010). [CrossRef]
  17. R. G. Brown and P. Y. C Hwang, Introduction to random signals and applied kalman filtering (John Willey and Sons, 1992).
  18. M. Born and E. Wolf, Principles of optics (Cambridge University Press, 1999).
  19. J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D33, 3139–3145 (2000). [CrossRef]
  20. C.L. Mitsas and D.I. Siapkas, “Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates,” Appl. Opt.34, 1678–1683 (1995). [CrossRef] [PubMed]
  21. M.C. Troparevsky, A.S. Sabau, A.R. Lupini, and Z. Zhang, “Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference,” Opt. Express18, 24715–24721 (2010). [CrossRef] [PubMed]
  22. A. Niv, M. Gharghi, C. Gladden, O. D. Miller, and X. Zhang, “Near-Field Electromagnetic Theory for Thin Solar Cells,” Phys. Rev. Lett.109, 138701 (2012). [CrossRef] [PubMed]
  23. C.C. Katsidis and D.I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt.41, 3978–3987 (2002). [CrossRef] [PubMed]
  24. J.S.C. Prentice, “Optical genration rate of electron-hole pairs in multilayer thin-film photovoltaic cells,” J. Phys. D32, 2146–2150 (1999). [CrossRef]
  25. E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers,” Appl. Opt.44, 7532–7539 (2005). [CrossRef] [PubMed]
  26. W. Lee, S.Y. Lee, J. Kim, S. C. Kim, and B. Lee, “A numerical analysis of the effect of partially-coherent light in photovoltaic devices considering coherence length,” Opt. Express20, A941–A953 (2012). [CrossRef] [PubMed]
  27. R. Santbergen, A. H.M. Smets, and M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express21, A262–A267 (2013). [CrossRef] [PubMed]
  28. E.D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  29. B.O. Seraphin, Solar Energy Conversion, Solid-State Physics Aspects (Springer-Verlag, 1979) [CrossRef]
  30. E. Hecht, Optics (Pearson Education, 2002)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited