OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S4 — Jul. 1, 2013
  • pp: A669–A676

Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells

Inho Kim, Taek Seong Lee, Doo Seok Jeong, Wook Seong Lee, Won Mok Kim, and Kyeong-Seok Lee  »View Author Affiliations

Optics Express, Vol. 21, Issue S4, pp. A669-A676 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transparent metal grid combining with plasmonic absorption enhancement is a promising replacement to indium tin oxide thin films. We numerically demonstrate metal grids in one or two dimension lead to plasmonic absorption enhancements in ultrathin organic solar cells. In this paper, we study optical design of metal grids for plasmonic light trapping and identify different plasmonic modes of the surface plasmon polaritons excited at the interfaces of glass/metal grids, metal grids/active layers, and the localized surface plasmon resonance of the metal grids using numerical calculations. One dimension metal grids with the optimal design of a width and a period lead to the absorption enhancement in the ultrathin active layers of 20 nm thickness by a factor of 2.6 under transverse electric polarized light compared to the case without the metal grids. Similarly, two dimensional metal grids provide the absorption enhancement by a factor of 1.8 under randomly polarized light.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: March 11, 2013
Revised Manuscript: May 21, 2013
Manuscript Accepted: May 21, 2013
Published: May 28, 2013

Inho Kim, Taek Seong Lee, Doo Seok Jeong, Wook Seong Lee, Won Mok Kim, and Kyeong-Seok Lee, "Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells," Opt. Express 21, A669-A676 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013). [CrossRef]
  2. R. F. Service, “Solar Energy. Outlook Brightens for Plastic Solar Cells,” Science 332(6027), 293 (2011). [CrossRef] [PubMed]
  3. J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, J. M. Frost, “Modeling charge transport in organic photovoltaic materials,” Acc. Chem. Res. 42(11), 1768–1778 (2009). [CrossRef] [PubMed]
  4. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010). [CrossRef]
  5. N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008). [CrossRef]
  6. S. Shahin, P. Gangopadhyay, R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: Plasmon enhanced performance using Au nanoparticles,” Appl. Phys. Lett. 101(5), 053104–053109 (2012). [CrossRef]
  7. F.-X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99(15), 153304 (2011). [CrossRef]
  8. E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012). [CrossRef] [PubMed]
  9. J. Krantz, M. Richter, S. Spallek, E. Spiecker, C. J. Brabec, “Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells,” Adv. Funct. Mater. 21(24), 4784–4787 (2011). [CrossRef]
  10. M. G. Kang, L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. 19(10), 1391–1396 (2007). [CrossRef]
  11. M.-G. Kang, M.-S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008). [CrossRef]
  12. T. H. Reilly Iii, J. V. D. Lagemaat, R. C. Tenent, A. J. Morfa, K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
  13. F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007). [CrossRef]
  14. J. M. Hammer, G. Ozgur, G. A. Evans, J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys. 100(10), 103103 (2006). [CrossRef]
  15. R. B. Smith and G. L. Mitchell, Calculation of Complex Propagating Modes in Arbitrary, Plane-Layered, Complex Dielectric Structures (Southern Methodist University, Dallas, 1998).
  16. M.-G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010). [CrossRef] [PubMed]
  17. C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007). [CrossRef] [PubMed]
  18. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010). [CrossRef] [PubMed]
  19. K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  20. G. Lévêque, O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14(21), 9971–9981 (2006). [CrossRef] [PubMed]
  21. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited