OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S4 — Jul. 1, 2013
  • pp: A677–A686

Broadband, polarization-insensitive and wide-angle absorption enhancement of a-Si:H/μc-Si:H tandem solar cells by nanopatterning a-Si:H layer

Xiaofeng Li, Cheng Zhang, Zhenhai Yang, and Aixue Shang  »View Author Affiliations

Optics Express, Vol. 21, Issue S4, pp. A677-A686 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1599 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photonic crystal design that significantly enhances the absorption of tandem thin-film solar cells composed by amorphous and microcrystalline silicon (i.e., a-Si:H/μc-Si:H tandem cell) is proposed. The top junction with a-Si:H is nanopatterned as a one-dimensional photonic crystal. Considering the photocurrent matching, we optimally design the junction thickness and the configuration of the nanopattern; moreover, both transverse electric and magnetic incidences with various illuminating angles are taken into account. Calculations by rigorous coupled-wave approach and finite-element method show that the nanophotonic crystal design can improve the absorption and output photocurrent by over 20%, which shows very low sensitivity to the incident polarization. Moreover, the proposed structure is able to sustain the performance for a very wide angle ranges from 0° to ~80°.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:

Original Manuscript: April 17, 2013
Revised Manuscript: May 23, 2013
Manuscript Accepted: May 23, 2013
Published: May 30, 2013

Xiaofeng Li, Cheng Zhang, Zhenhai Yang, and Aixue Shang, "Broadband, polarization-insensitive and wide-angle absorption enhancement of a-Si:H/μc-Si:H tandem solar cells by nanopatterning a-Si:H layer," Opt. Express 21, A677-A686 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Shah, H. Schade, M. Vanecek, J. Meir, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, “Thin-film solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004). [CrossRef]
  2. J. Meir, S. Dubail, R. Flückiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic microcrystalline silicon (μc-Si:H)‒a promising new thin film solar cell material,” Proc. 1st World Conf. Photovol. Energy Conversion 409–412 (1994).
  3. A. V. Shah, M. Vaněček, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Faÿ, E. Vallat-Sauvain, V. Terrazzoni-Daudrixa, J. Bailata, “Basic efficiency limits, recent experimental results and novel light-trapping schemes in a-Si:H, μc-Si:H and ‘micromorph tandem’ solar cells,” J. Pho-crystalline Solids 338–340, 639–645 (2004). [CrossRef]
  4. J. Meir, J. Spitznagel, S. Fäy, C. Bucher, U. Graf, U. Kroll, S. Dubail, and A. Shah, “Enhanced light-trapping for micromorph tandem solar cells by LP-CVD ZnO,” 29thIEEE PVSC 1118–1121 (2002).
  5. D. Fischer, S. Dubail, J. A. Anna Selvan, N. Pellaton-Vauter, R. Platz, C. Hof, U. Kroll, J. Meier, P. Torres, H. Keppner, N. Wyrsch, M. Goetz, A. Shah, and K. D. Ufert, “The micromorph solar cell: extending a-Si:H technology towards thin film crystalline cilion,” 25th PVSEC 1053–1056 (1996).
  6. K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Goto, T. Meguro, T. Matsuda, M. Kondo, T. Sasaki, Y. Tawada, “A high efficiency thin film silicon solar cell and module,” Sol. Energy 77(6), 939–949 (2004). [CrossRef]
  7. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  8. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009). [CrossRef] [PubMed]
  9. O. E. Daif, E. Drouard, G. Gomard, A. Kaminski, A. Fave, M. Lemiti, S. Ahn, S. Kim, P. R. I. Cabarrocas, H. Jeon, C. Seassal, “Absorbing one-dimensional planer photonic crystal for amorphous silicon solar cell,” Opt. Express 18, A294–A299 (2010).
  10. M. Peters, M. Rüdiger, B. Bläsi, W. Platzer, “Electro-optical simulation of diffraction in solar cells,” Opt. Express 18(S4Suppl 4), A584–A593 (2010). [CrossRef] [PubMed]
  11. A. P. Vasudev, J. A. Schuller, M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20(S3), A385–A394 (2012). [CrossRef] [PubMed]
  12. A. Bozzola, M. Liscidini, L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2Suppl 2), A224–A244 (2012). [CrossRef] [PubMed]
  13. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  14. X. Li, S. F. Yu, “Extremely high sensitive plasmonic refractive index sensors based on metallic grating,” Plasmonics 5(4), 389–394 (2010). [CrossRef]
  15. X. Li, S. F. Yu, “Diffraction characteristics of concentric circular metal grating operating within terahertz regime,” IEEE J. Quantum Electron. 46(6), 898–905 (2010). [CrossRef]
  16. J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003).
  17. Comsol Multiphysics, http://www.comsol.com/ .
  18. S. E. Han, G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010). [CrossRef] [PubMed]
  19. J. Grandidier, D. M. Callahan, J. N. Munday, H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011). [CrossRef] [PubMed]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  21. ASTM, Reference solar spectral irradiance: AM 1.5 Spectra. http://rredc.nrel.gov/solar/spectra/am1.5 .
  22. X. Li, N. Hylton, V. Giannini, K. Lee, N. J. Ekins-Daukes, S. A. Maier, “Multi-dimensional modelling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013). [CrossRef]
  23. X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(S4Suppl 4), A888–A896 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited