OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S4 — Jul. 1, 2013
  • pp: A695–A703

The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4

Rabie Djemour, Alex Redinger, Marina Mousel, Levent Gütay, Xavier Fontané, Victor Izquierdo-Roca, Alejandro Pérez-Rodríguez, and Susanne Siebentritt  »View Author Affiliations


Optics Express, Vol. 21, Issue S4, pp. A695-A703 (2013)
http://dx.doi.org/10.1364/OE.21.00A695


View Full Text Article

Enhanced HTML    Acrobat PDF (1326 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate CZTSe films by polarization dependent Raman spectroscopy. The main peaks at 170 cm−1, and 195 cm−1 are found to have A symmetry. The Raman signal at 170 cm−1 is found to be composed of two modes at 168 cm−1 and 172 cm−1. We attribute these three Raman peaks to the three A symmetry modes predicted for kesterite ordered Cu2ZnSnSe4. The main Raman peak is asymmetrically broadened towards lower energies. Possible sources of the broadening are tested through temperature and depth dependent measurements. The broadening is attributed to phonon confinement effects related to the presence of lattice defects.

© 2013 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(170.5660) Medical optics and biotechnology : Raman spectroscopy

ToC Category:
Materials

History
Original Manuscript: March 12, 2013
Revised Manuscript: May 24, 2013
Manuscript Accepted: May 28, 2013
Published: June 17, 2013

Citation
Rabie Djemour, Alex Redinger, Marina Mousel, Levent Gütay, Xavier Fontané, Victor Izquierdo-Roca, Alejandro Pérez-Rodríguez, and Susanne Siebentritt, "The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4," Opt. Express 21, A695-A703 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S4-A695


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Siebentritt and S. Schorr, “Kesterites - a challenging material for solar cells,” Prog. Photovolt. Res. Appl.20(5), 512–519 (2012). [CrossRef]
  2. D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energy Mater. Sol. Cells95(6), 1421–1436 (2011). [CrossRef]
  3. T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, and D. B. Mitzi, “Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn (S, Se) 4 Solar Cells,” Adv. Energy Mater. (2012).
  4. U. Rau, D. Abou-Ras, and T. Kirchartz, Advanced Characterization Techniques for Thin Film Solar Cells (Wiley-VCH, 2011).
  5. A. Pérez Rodríguez, L. Calvo-Barrio, J. Alvarez-Garcia, J. R. Morante, V. Bermudez, O. Ramdani, J. Kurdi, P. P. Grand, L. Parissi, and O. Kerrec, “Raman scattering microcrystalline assessment and device quality control of electrodepo sited CuIn(S,Se)(2) based solar cells,” Thin Solid Films516(20), 7021–7025 (2008). [CrossRef]
  6. T. C. Damen, S. P. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev.142(2), 570–574 (1966). [CrossRef]
  7. B. Eckert, H. O. Albert, H. J. Jodl, and P. Foggi, “Raman studies of sulfur crystal (α-S8) at high pressures and low temperatures,” J. Phys. Chem.100(20), 8212–8219 (1996). [CrossRef]
  8. C. Persson, “Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4,” J. Appl. Phys.107(5), 053710 (2010). [CrossRef]
  9. J. Paier, R. Asahi, A. Nagoya, and G. Kresse, “Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study,” Phys. Rev. B79(11), 115126 (2009). [CrossRef]
  10. S. Botti, D. Kammerlander, and M. A. L. Marques, “Band structures of Cu2ZnSnS4 and Cu2ZnSnSe4 from many-body methods,” Appl. Phys. Lett.98(24), 241915 (2011). [CrossRef]
  11. M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, and H. Wondratschek, “Bilbao crystallographic server: I. Databases and crystallographic computing programs,” Z. Kristallogr.221(1_2006), 15–27 (2006). [CrossRef]
  12. M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, and H. Wondratschek, “Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups,” Acta Crystallogr. A62(2), 115–128 (2006). [CrossRef] [PubMed]
  13. N. B. M. Amiri and A. Postnikov, “Electronic structure and lattice dynamics in kesterite-type Cu2ZnSnSe4 from first-principles calculations,” Phys. Rev. B82(20), 205204 (2010).
  14. T. Gürel, C. Sevik, and T. Cagin, “Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures,” Phys. Rev. B84(20), 205201 (2011). [CrossRef]
  15. A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, “Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments,” J. Appl. Phys.111, 083707 (2012).
  16. M. Grossberg, J. Krustok, K. Timmo, and M. Altosaar, “Radiative recombination in Cu2ZnSnSe4 monograins studied by photoluminescence spectroscopy,” Thin Solid Films517(7), 2489–2492 (2009). [CrossRef]
  17. Z. Chen, L. Han, L. Wan, C. Zhang, H. Niu, and J. Xu, “Cu2ZnSnSe4 thin films prepared by selenization of co-electroplated Cu-Zn-Sn precursors,” Appl. Surf. Sci.257(20), 8490–8492 (2011). [CrossRef]
  18. N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi, “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A30(5), 051201 (2012). [CrossRef]
  19. K. W. Adu, H. R. Gutiérrez, U. J. Kim, and P. C. Eklund, “Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study,” Phys. Rev. B73(15), 155333 (2006). [CrossRef]
  20. K. W. Adu, Q. Xiong, H. R. Gutierrez, G. Chen, and P. C. Eklund, “Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires,” Appl. Phys. A. Mmate.85, 287–297 (2006).
  21. S. Piscanec, M. Cantoro, A. C. Ferrari, J. A. Zapien, Y. Lifshitz, S. T. Lee, S. Hofmann, and J. Robertson, “Raman spectroscopy of silicon nanowires,” Phys. Rev. B68(24), 241312 (2003). [CrossRef]
  22. H. Münder, C. Andrzejak, M. G. Berger, U. Klemradt, H. Luth, R. Herino, and M. Ligeon, “A detailed sRaman study of porous silicon,” Thin Solid Films221(1-2), 27–33 (1992). [CrossRef]
  23. H. Richter, Z. P. Wang, and L. Ley, “The one phonon raman spectrum in microcrystalline silicon,” Solid State Commun.39(5), 625–629 (1981). [CrossRef]
  24. I. H. Campbell and P. M. Fauchet, “The effect of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun.58(10), 739–741 (1986). [CrossRef]
  25. X. Fontané, V. Izquierdo-Roca, E. Saucedo, S. Schorr, V. O. Yukhymchuk, M. Y. Valakh, A. Pérez-Rodríguez, and J. R. Morante, “Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4,” J. Alloy. Comp.539, 190–194 (2012). [CrossRef]
  26. D. Dumcenco and Y.-S. Huang, “The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy,” Opt. Mater.35(3), 419–425 (2013). [CrossRef]
  27. E. Rudigier, T. Enzenhofer, and R. Scheer, “Determination of the quality of CuInS2-based solar cells combining Raman and photoluminescence spectroscopy,” Thin Solid Films480-481, 327–331 (2005). [CrossRef]
  28. A. L. Stancik and E. B. Brauns, “A simple asymmetric lineshape for fitting infrared absorption spectra,” Vib. Spectrosc.47(1), 66–69 (2008). [CrossRef]
  29. P. K. Sarswat, M. L. Free, and A. Tiwari, “Temperature-dependent study of the Raman A mode of Cu2ZnSnS4 thin films,” Phys. Status Solidi B248, 2170–2174 (2011).
  30. M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik, “Photoluminescence and Raman study of Cu2ZnSn(SexS1-x)(4) monograins for photovoltaic applications,” Thin Solid Films519(21), 7403–7406 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited