OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S4 — Jul. 1, 2013
  • pp: A704–A713

Effect of laser pulse energy on orthogonal double femtosecond pulse laser-induced breakdown spectroscopy

Xiaoliang Liu, Shaohua Sun, Xiaoshan Wang, Zuoye Liu, Qingcao Liu, Pengji Ding, Zeqin Guo, and Bitao Hu  »View Author Affiliations


Optics Express, Vol. 21, Issue S4, pp. A704-A713 (2013)
http://dx.doi.org/10.1364/OE.21.00A704


View Full Text Article

Enhanced HTML    Acrobat PDF (2245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, the effect of laser pulse energy on orthogonal double femtosecond pulse laser induced breakdown spectroscopy (LIBS) in air is studied. In the experiment, the energy of the probe pulse is changeable, while the pump pulse energy is held constant. At the same time, a systematic study of the laser induced breakdown spectroscopy signal dependence on the inter-pulse delay between the two pulses is performed. It is noted that the double pulse orthogonal configuration yields 2–32 times signal enhancement for the ionic and atomic lines as compared to the single pulse LIBS spectra when an optimum temporal separation between the two pulses is used, while there is no significant signal enhancement for the molecular lines in the studied range of the delay. It is also noted that the dependence of the enhancement factor for ionic and atomic lines on the inter-pulse delay can be fitted by Gaussian function. Furthermore, the electron temperature obtained by the relative line-to-continuum intensity ratio method was used to explain the LIBS signal enhancement.

© 2013 OSA

OCIS Codes
(350.5400) Other areas of optics : Plasmas
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Spectroscopy

History
Original Manuscript: March 6, 2013
Revised Manuscript: May 9, 2013
Manuscript Accepted: June 10, 2013
Published: June 26, 2013

Citation
Xiaoliang Liu, Shaohua Sun, Xiaoshan Wang, Zuoye Liu, Qingcao Liu, Pengji Ding, Zeqin Guo, and Bitao Hu, "Effect of laser pulse energy on orthogonal double femtosecond pulse laser-induced breakdown spectroscopy," Opt. Express 21, A704-A713 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S4-A704


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Giacomo, M. DellAglio, O. D. Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous,” Spectrochim. Acta, Part B62, 721–738 (2007). [CrossRef]
  2. K. H. Kurniawan and K. Kagawa, “Hydrogen and deuterium analysis using laser-induced plasma spectroscopy,” Appl. Spectrosc. Rev.41, 99–130 (2006). [CrossRef]
  3. W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser induced breakdown spectroscopy: a review of material approaches,” Appl. Spectrosc. Rev.39, 27–97 (2004). [CrossRef]
  4. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc.18, 463–512 (2007). [CrossRef]
  5. K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev.37, 89–117 (2002). [CrossRef]
  6. J. M. Vadillo and J. J. Laserna, “Laser-induced plasma spectrometry: truly a surface analytical tool,” Spectrochim. Acta, Part B59, 147–161 (2004). [CrossRef]
  7. B. Zhou, S. Akturk, B. Prade, Y. B. Andr, A. Houard, Y. Liu, M. Franco, C. D. Amico, E. Salmon, Z. Q. Hao, N. Lascoux, and A. Mysyrowicz, “Revival of femtosecond laser plasma filaments in air by a nanosecond laser,” Opt. Express, 17, 11450–11456 (2009). [CrossRef] [PubMed]
  8. T. J. Wang, H. L. Xu, J. F. Daigle, A. Sridharan, S. Yuan, and S. L. Chin, “Water vapor concentration measurement in air using filament-induced fluorescence spectroscopy,” Opt. Lett.37, 1706–1708 (2012). [CrossRef] [PubMed]
  9. M. Z. Martin, S. D. Wullschleger, C. T. Garten, and V. Anthony, “Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils,” Appl. Opt.42, 2072–2077 (2003). [CrossRef] [PubMed]
  10. M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “On-line monitoring of remediation process of chromium polluted soil using LIBS,” J. Hazard. Mater.163, 1265–1271 (2009). [CrossRef]
  11. T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in gulf war oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess.136, 391–399 (2008). [CrossRef]
  12. T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, “Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy,” J. Phys. Chem. B108, 5477–5482 (2004). [CrossRef]
  13. R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem.24, 1125–1411 (2009). [CrossRef]
  14. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys.99, 084701–084701-9(2006). [CrossRef]
  15. N. Menyuk, D. K. Killinger, and C. R. Menyuk, “Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements,” Appl. Opt.21, 3377–3383 (1982). [CrossRef] [PubMed]
  16. K. M. Guo, J. Q. Lin, Z. Q. Hao, X. Gao, Z. M. Zhao, C. K. Sun, and B. Z. Li, “Triggering and guiding high-voltage discharge in air by single and multiple femtosecond filaments,” Opt. Lett.37, 259–261 (2012). [CrossRef] [PubMed]
  17. Z. Zhang, X. Lu, W. X. Liang, Z. Q. Hao, M. L. Zhou, Z. H. Wang, X. Liu, and J. Zhang, “Triggering and guiding HV discharge in air by filamentation of single and dual fs pulses,” Opt. Express, 17, 3461–3468 (2009). [CrossRef] [PubMed]
  18. V. Piñon and D. Anglos, “Optical emission studies of plasma induced by single and double femtosecond laser pulses,” Spectrochim. Acta, Part B64, 950–960 (2009). [CrossRef]
  19. S. Michael Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresen. J. Anal. Chem.369, 320–327 (2001). [CrossRef]
  20. A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films453–454,501–505 (2004). [CrossRef]
  21. A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: A modeling investigation,” Spectrochim. Acta, Part B63, 746–754 (2008). [CrossRef]
  22. J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem.78, 24–32 (2006). [CrossRef] [PubMed]
  23. A. D. Giacomo, M. DellAglio, D. Bruno, R. Gaudiuso, and O. D. Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta, Part B63, 805–816 (2008). [CrossRef]
  24. S. C. Choi, M. K. Oh, Y. Lee, S. Nam, D. K. Ko, and J. Lee, “Dynamic effects of a pre-ablation spark in the orthogonal dual-pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B64, 427–435 (2009). [CrossRef]
  25. G. Galbacs, V. Budavari, and Z. Geretovszky, “Multi-pulse laser-induced plasma spectroscopy using a single laser source and a compact spectrometer,” J. Anal. At. Spectrom.20, 974–980 (2005). [CrossRef]
  26. V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B61, 999–1014 (2006). [CrossRef]
  27. G Cristoforettim, “Orthogonal double-pulse versus single-pulse laser ablation at different air pressures: a comparison of the mass removal mechanisms,” Spectrochim. Acta, Part B64, 26–34 (2009). [CrossRef]
  28. T. Tsang, M. A. Krumbgel, K. W. Delong, D. N. Fittinghoff, and R. Trebino, “Frequency-resolved optical-grating measurements of ultrashort pulses using surface third-harmonic generation,” Opt. Lett.21, 1381–1383 (1996). [CrossRef] [PubMed]
  29. K. Shimizu, T. Ishii, and M. Blajan, “Emission spectroscopy of pulsed power microplasma for atmospheric pollution control,” IEEE Trans. Ind. Appl.46, 1125–1131 (2010). [CrossRef]
  30. M. Blajan, S. Muramatsu, T. Ishii, H. Mimura, and K. Shimizu, “Emission spectroscopy of microplasma driven by a pulsed power supply,” J. Inst. Electrostat. Jpn.34, 99–104 (2010).
  31. C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancement for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta, Part B60, 265–276 (2005). [CrossRef]
  32. L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, Part B57, 121–135 (2002). [CrossRef]
  33. G. J. Bastiaans and R. A. Mangold, “The calculation of electron density and temperature in Ar spectroscopic plasmas from continuum and line spectra,” Spectrochim. Acta.40B,885–892 (1985).
  34. H. Luna, J. Dardis, D. Doria, and J. T. Costello, “Analysis of time-resolved laser plasma ablation using an imaging spectra technique,” Braz.J. Phys.37, 1301–1305 (2007). [CrossRef]
  35. H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta, Part B54, 1607–1624 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited