OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S4 — Jul. 1, 2013
  • pp: A714–A725

Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells

Constantin Simovski, Dmitry Morits, Pavel Voroshilov, Michael Guzhva, Pavel Belov, and Yuri Kivshar  »View Author Affiliations

Optics Express, Vol. 21, Issue S4, pp. A714-A725 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We suggest a new type of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from their plasmon resonances. The operation principle of our structures relies on the excitation of collective modes of the nanoantenna arrays whose electric field is localized between the adjacent metal elements. We calculate a substantial enhancement of the short-circuit photocurrent for photovoltaic layers as thin as 100–150 nm. We compare our light-trapping structures with conventional anti-reflecting coatings and demonstrate that our design approach is more efficient. We show that it may provide a general background for different types of broadband light-trapping structures compatible with large-area fabrication technologies for thin-film solar cells.

© 2013 osa

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(230.5298) Optical devices : Photonic crystals

ToC Category:

Original Manuscript: April 11, 2013
Revised Manuscript: June 7, 2013
Manuscript Accepted: June 7, 2013
Published: June 26, 2013

Constantin Simovski, Dmitry Morits, Pavel Voroshilov, Michael Guzhva, Pavel Belov, and Yuri Kivshar, "Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells," Opt. Express 21, A714-A725 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Ultra-Low-Cost Solar Electricity Cells, An Overview of Nanosolars Cell Technology Platform, Nanosolar, Inc. White Paper - September 2, 2009, available at www.catharinafonds.nl/wp-content/uploads/2010/03/NanosolarCellWhitePaper.pdf
  2. A. Marti, A. Luque, Next-Generation Photovoltaics(Institute of Physics Publishing, 2004). [CrossRef]
  3. J. Nelson, The Physics of Solar Cells(Imperial College Press, 2003). [CrossRef]
  4. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010). [CrossRef]
  5. C. Heine, H. M. Rudolf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34, 2476–2482 (1995). [CrossRef] [PubMed]
  6. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007). [CrossRef] [PubMed]
  7. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Effciency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 11111 (2006). [CrossRef]
  8. S. B. Mallick, M. Agrawal, P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18, 5691–5706 (2007). [CrossRef]
  9. P. Campbell, M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987). [CrossRef]
  10. J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451/452,518–524 (2004). [CrossRef]
  11. J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics: Res. Appl.(2012). [CrossRef]
  12. Yu. A. Akimov, K. Ostrikov, E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009). [CrossRef]
  13. P. A. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping in thin-film Si solar cells,”J. Opt. 14, 024002 (2012). [CrossRef]
  14. E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,”IEEE Trans. Electron. Dev. 29, 300–305 (1982). [CrossRef]
  15. H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983). [CrossRef]
  16. D. M. Callahan, J. N. Munday, H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12, 214–218 (2011). [CrossRef] [PubMed]
  17. K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93,191113 (2008).
  18. J. Müller, B. Rech, J. Springer, M. Vanecek, “TCO and light trapping in silicon thin-film solar cells,” Solar Energy 77, 917–930 (2004). [CrossRef]
  19. R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009). [CrossRef]
  20. C. Rockstuhl, F. Lederer, “Photon management by metal nanodisks in thin-film solar cells,” Appl. Phys. lett. 94, 213102 (2009). [CrossRef]
  21. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Zh. Ren, K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012). [CrossRef]
  22. V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008). [CrossRef]
  23. J. Grandidier, D. M. Callahan, J. N. Munday, H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011) [CrossRef] [PubMed]
  24. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Optics Express 18, 754–764 (2010). [CrossRef] [PubMed]
  25. C. Simovski, O. Luukkonen, “Tapered plasmonic waveguides with efficient and broadband field transmission,” Opt. Comm. 285, 3397–3402 (2012). [CrossRef]
  26. G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96, 022104 (2010). [CrossRef]
  27. A. Goetzberger, C. Hebling, H.-W. Schock, “Photovoltaic materials, history, status and outlook,” Materials Science and Engineering R 40, 1–46 (2003). [CrossRef]
  28. T. Negami, S. Nishiwaki, Y. Hashimoto, N. Kohara, “Effect of the absorber thickness on performance of Cu(In,Ga)Se2 solar cells,” in: Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion,Vienna, Austria, May 12–15, 1998; 1181–1184.
  29. P.D. Paulson, R.W. Birkmire, W.N. Shafarman, “Optical characterization of CuIn1−xGaxSe2alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94, 879–888 (2003). [CrossRef]
  30. M.I. Alonso, M. Carriga, C.A. Durante-Rincon, E. Hernandez, M. Leon, “Optical functions of chalcopyrite CuGaxIn(1−x)Se2amorphous alloys,” Appl. Phys. A 74, 659–664 (2002). [CrossRef]
  31. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Optical Materials 29, 1481–1490 (2007). [CrossRef]
  32. J. W. Horwitz, “Infrared refractive index of polyethylene and a polyethylene-based material,” Opt. Engineering 50, 093603 (2011). [CrossRef]
  33. G. Hass, C. Salzberg, “Optical properties of silicon monoxide in the wavelength region from 0.24 to 14.0 microns,”J. Opt. Soc. Am. 44, 181–183 (1954) [CrossRef]
  34. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet,”J. Applied Phys. 92, 2424–2436 (2002). [CrossRef]
  35. A.S. Shalin, “Optical antireflection of a medium by nanocrystal layers,” Quantum Electronic 41, 163–169 (2011). [CrossRef]
  36. R. Brendel, Thin-film crystalline silicon solar cells: Physics and Technology(Wiley-VCH, 2003). [CrossRef]
  37. D. K. Kotter, S. D. Novack, W. D. Slafer, P. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Solar Energy Engineering 132, 011014 (2010). [CrossRef]
  38. S.-I. Na, S.-S. Kim, J. Jo, D.-Yu Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mat. 20, 4061–4067 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited