OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S5 — Sep. 9, 2013
  • pp: A798–A807

Effect of surface type on structural and optical properties of Ag nanoparticles formed by dewetting

Irem Tanyeli, Hisham Nasser, Firat Es, Alpan Bek, and Raşit Turan  »View Author Affiliations


Optics Express, Vol. 21, Issue S5, pp. A798-A807 (2013)
http://dx.doi.org/10.1364/OE.21.00A798


View Full Text Article

Enhanced HTML    Acrobat PDF (1403 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Integration of an array of Ag nanoparticles in solar cells is expected to increase light trapping through field enhancement and plasmonic scattering. Requirement of Ag nanoparticle decoration of cell surfaces or interfaces at the macro-scale, calls for a self-organized fabrication method such as thermal dewetting. Optical properties of a 2D array of Ag nanoparticles are known to be very sensitive to their shape and size. We show that these parameters depend on the type of the substrate used. We observe that the average nanoparticle size decreases with increasing substrate thermal conductivity and nanoparticle size distribution broadens with increasing surface roughness.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(350.6050) Other areas of optics : Solar energy
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Photovoltaics

History
Original Manuscript: April 10, 2013
Revised Manuscript: July 1, 2013
Manuscript Accepted: July 3, 2013
Published: July 31, 2013

Citation
Irem Tanyeli, Hisham Nasser, Firat Es, Alpan Bek, and Raşit Turan, "Effect of surface type on structural and optical properties of Ag nanoparticles formed by dewetting," Opt. Express 21, A798-A807 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S5-A798


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  2. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater.22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  3. M. D. Yang, Y. K. Liu, J. L. Shen, C. H. Wu, C. A. Lin, W. H. Chang, H. H. Wang, H. I. Yeh, W. H. Chan, and W. J. Parak, “Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters,” Opt. Express16(20), 15754–15758 (2008). [CrossRef] [PubMed]
  4. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009). [CrossRef]
  5. S. Vedraine, P. Torchio, D. Duché, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011). [CrossRef]
  6. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998). [CrossRef]
  7. R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt.14(2), 024010 (2012). [CrossRef]
  8. U. Güler and R. Turan, “Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles,” Opt. Express18(16), 17322–17338 (2010). [CrossRef] [PubMed]
  9. C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92(1), 013113 (2008). [CrossRef]
  10. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011). [CrossRef] [PubMed]
  11. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett.95(5), 053115 (2009). [CrossRef]
  12. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  13. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012). [CrossRef] [PubMed]
  14. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010). [CrossRef]
  15. O. Gülseren, Department of Physics, Bilkent University, 06880 Ankara, Turkey, (personal communication, 2012).
  16. F. Célarié, M. Ciccotti, and C. Marlière, “Stress-enhanced ion diffusion at the vicinity of a crack tip as evidenced by atomic force microscopy in silicate glasses”, http://arxiv.org/abs/cond-mat/0512567 .
  17. P. Chaudhari, “Hillock growth in thin films,” J. Appl. Phys.45(10), 4339–4346 (1974). [CrossRef]
  18. C. Y. Chang and R. W. Vook, “Thermally induced hillock formation in Al-Cu films,” J. Mater. Res.4(05), 1172–1181 (1989). [CrossRef]
  19. E. Iwamura, T. Ohnishi, and K. Yoshikawa, “A study of hillock formation on Al-Ta alloy films for interconnections of TFT-LCDs,” Thin Solid Films270(1-2), 450–455 (1995). [CrossRef]
  20. Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys.56(2), 314–320 (1984). [CrossRef]
  21. H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400°K,” Phys. Rev.130(5), 1743–1748 (1963). [CrossRef]
  22. C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3°K to the melting point,” Phys. Rev.134(4A), A1058–A1069 (1964). [CrossRef]
  23. C. M. Fang, G. A. de Wijs, H. T. Hintzen, and G. de With, “Phonon spectrum and intrinsic thermal properties of cubic Si3N4 from first-principles calculations,” J. Appl. Phys.93(9), 5175–5180 (2003). [CrossRef]
  24. J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook (CRC Press, 2000).
  25. S. M. Sze, Physics of Semiconductor Devices (John Wiley and Sons Inc., 1981).
  26. N. Oka, K. Kimura, T. Yagi, N. Taketoshi, T. Baba, and Y. Shigesato, “Thermophysical and electrical properties of Al-doped ZnO films,” J. Appl. Phys.111(9), 093701 (2012). [CrossRef]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited