OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S5 — Sep. 9, 2013
  • pp: A821–A828

Single-material zinc sulfide bi-layer antireflection coatings for GaAs solar cells

Jung Woo Leem, Dong-Hwan Jun, Jonggon Heo, Won-Kyu Park, Jin-Hong Park, Woo Jin Cho, Do Eok Kim, and Jae Su Yu  »View Author Affiliations


Optics Express, Vol. 21, Issue S5, pp. A821-A828 (2013)
http://dx.doi.org/10.1364/OE.21.00A821


View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated the efficiency improvement of GaAs single-junction (SJ) solar cells with the single-material zinc sulfide (ZnS) bi-layer based on the porous/dense film structure, which was fabricated by the glancing angle deposition (GLAD) method, as an antireflection (AR) coating layer. The porous ZnS film with a low refractive index was formed at a high incident vapor flux angle of 80° in the GLAD. Each optimum thickness of ZnS bi-layer was determined by achieving the lowest solar weighted reflectance (SWR) using a rigorous coupled-wave analysis method in the wavelength region of 350-900 nm, extracting the thicknesses of 20 and 50 nm for dense and porous films, respectively. The ZnS bi-layer with a low SWR of ~5.8% considerably increased the short circuit current density (Jsc) of the GaAs SJ solar cell to 25.57 mA/cm2, which leads to a larger conversion efficiency (η) of 20.61% compared to the conventional one without AR layer (i.e., SWR~31%, Jsc = 18.81 mA/cm2, and η = 14.82%). Furthermore, after the encapsulation, its Jsc and η values were slightly increased to 25.67 mA/cm2 and 20.71%, respectively. For the fabricated solar cells, angle-dependent reflectance properties and external quantum efficiency were also studied.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4760) Materials : Optical properties
(310.1210) Thin films : Antireflection coatings
(310.1860) Thin films : Deposition and fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Photovoltaics

History
Original Manuscript: April 15, 2013
Revised Manuscript: May 21, 2013
Manuscript Accepted: July 11, 2013
Published: August 1, 2013

Citation
Jung Woo Leem, Dong-Hwan Jun, Jonggon Heo, Won-Kyu Park, Jin-Hong Park, Woo Jin Cho, Do Eok Kim, and Jae Su Yu, "Single-material zinc sulfide bi-layer antireflection coatings for GaAs solar cells," Opt. Express 21, A821-A828 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S5-A821


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE2776, 300–309 (1996). [CrossRef]
  2. K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev.57(10), 2427–2433 (2010). [CrossRef]
  3. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  4. H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863–2869 (2011). [CrossRef]
  5. L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1(4), 506–510 (2011). [CrossRef]
  6. Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436–3441 (2011). [CrossRef]
  7. C. A. Lin, K. Y. Lai, W. C. Lien, and J. H. He, “An efficient broadband and omnidirectional light-harvesting scheme employing a hierarchical structure based on a ZnO nanorod/Si3N4-coated Si microgroove on 5-inch single crystalline Si solar cells,” Nanoscale4(20), 6520–6526 (2012). [CrossRef] [PubMed]
  8. C. H. Ho, D. H. Lien, H. C. Chang, C. A. Lin, C. F. Kang, M. K. Hsing, K. Y. Lai, and J. H. He, “Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells,” Nanoscale4(23), 7346–7349 (2012). [CrossRef] [PubMed]
  9. J. Chen, J. Xu, L. Wang, X. Li, and Y. Zhang, “Low-damage wet chemical etching for GaN-based visible-blind p-i-n detector,” Proc. SPIE6621, 66211D, 66211D-10 (2008). [CrossRef]
  10. P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21(16), 1618–1621 (2009). [CrossRef]
  11. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).
  12. C. Y. Chen, J. H. Huang, K. Y. Lai, Y. J. Jen, C. P. Liu, and J. H. He, “Giant optical anisotropy of oblique-aligned ZnO nanowire arrays,” Opt. Express20(3), 2015–2024 (2012). [CrossRef] [PubMed]
  13. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A25(5), 1317–1335 (2007). [CrossRef]
  14. M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett.33(21), 2527–2529 (2008). [CrossRef] [PubMed]
  15. J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3Suppl 3), A258–A268 (2011). [CrossRef] [PubMed]
  16. S. J. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, J. S. Yu, and Y. T. Lee, “Antireflective property of thin film a-Si solar cell structures with graded refractive index structure,” Opt. Express19(S2Suppl 2), A108–A117 (2011). [CrossRef] [PubMed]
  17. D. H. Jun, C. Z. Kim, H. Kim, H. B. Shin, H. K. Kang, W. K. Park, K. Shin, and C. G. Ko, “The effect of growth temperature and substrate tilt angle on GaInP/GaAs tandem solar cells,” J. Semiconductor Technol. Sci.9(2), 91–97 (2009). [CrossRef]
  18. SOPRA, N&K Database, http://refractiveindex.info , Accessed 1 Jan. (2013).
  19. S. Wang, X. Fu, G. Xia, J. Wang, J. Shao, and Z. Fan, “Structural and optical ZnS thin films grown by glancing angle deposition,” Appl. Surf. Sci.252(24), 8734–8737 (2006). [CrossRef]
  20. Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008). [CrossRef]
  21. D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells81(1), 13–24 (2004). [CrossRef]
  22. H. Nagel, A. G. Aberle, and R. Hezel, “Optimized antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide,” Prog. Photovolt. Res. Appl.7(4), 245–260 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited