OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S5 — Sep. 9, 2013
  • pp: A829–A840

Multiphoton near-infrared quantum cutting luminescence phenomena of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor

Xiaobo Chen, Gregory J. Salamo, Guojian Yang, Yongliang Li, Xianlin Ding, Yan Gao, Quanlin Liu, and Jinghua Guo  »View Author Affiliations

Optics Express, Vol. 21, Issue S5, pp. A829-A840 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1060 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the present study, the multiphoton near-infrared downconversion quantum cutting luminescence phenomena of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor, which is currently a hot research topic throughout the world, is reported. The x-ray diffraction spectra, the visible to near-infrared excitation and emission spectra, and fluorescence lifetimes are measured. It is found that Tm:YAG powder phosphor has intense two-photon quantum cutting luminescence, and, for the first time, it is found that Tm:YAG powder phosphor has strong four-photon near-infrared quantum cutting luminescence of 1788 nm 3F43H6 fluorescence of Tm3+ ion. It is also found that the theoretical up-limit of four-photon near-infrared quantum cutting efficiency is about 282.12%, which results from both the {1D23F2, 3H63H4} and {3H43F4, 3H63F4} cross-energy transfers.

© 2013 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence
(260.2160) Physical optics : Energy transfer
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(300.6440) Spectroscopy : Spectroscopy, optogalvanic

ToC Category:
Energy Transfer

Original Manuscript: July 8, 2013
Revised Manuscript: July 27, 2013
Manuscript Accepted: July 28, 2013
Published: August 7, 2013

Xiaobo Chen, Gregory J. Salamo, Guojian Yang, Yongliang Li, Xianlin Ding, Yan Gao, Quanlin Liu, and Jinghua Guo, "Multiphoton near-infrared quantum cutting luminescence phenomena of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor," Opt. Express 21, A829-A840 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006). [CrossRef]
  2. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71(1), 014119 (2005). [CrossRef]
  3. R. T. Wegh, H. Donker, K. D. Oskam, A. Meijerink, “Visible quantum cutting in LiGdF4 : Eu3+ through downconversion,” Science 283(5402), 663–666 (1999). [CrossRef] [PubMed]
  4. B. Bitnar, “Silicon, germanium silicon/germanium photocells for thermo photovoltaics applications,” Semicond. Sci. Technol. 18(5), S221–S227 (2003). [CrossRef]
  5. X. Y. Huang, S. Y. Han, W. Huang, X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012). [CrossRef] [PubMed]
  6. D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, F. Y. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008). [CrossRef] [PubMed]
  7. J. J. Zhou, Y. Teng, X. F. Liu, S. Ye, X. Q. Xu, Z. J. Ma, J. R. Qiu, “Intense infrared emission of Er3+ in Ca8Mg(SiO4)4Cl2 phosphor from energy transfer of Eu2+ by broadband down-conversion,” Opt. Express 18(21), 21663–21668 (2010). [CrossRef] [PubMed]
  8. X. B. Chen, J. G. Wu, X. L. Xu, Y. Z. Zhang, N. Sawanobori, C. L. Zhang, Q. H. Pan, G. J. Salamo, “Three-photon infrared quantum cutting from single species of rare-earth Er3+ ions in Er0.3Gd0.7VO4 crystalline,” Opt. Lett. 34(7), 887–889 (2009). [CrossRef] [PubMed]
  9. B. M. van der Ende, L. Aarts, A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009). [CrossRef]
  10. S. V. Eliseeva, J. C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2009). [CrossRef] [PubMed]
  11. B. M. van der Ende, L. Aarts, A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009). [CrossRef] [PubMed]
  12. J. X. Chen, J. R. Qiu, S. Ye, X. Wang, “Cooperative quantum cutting of nano-crystalline BaF2: Tb3+, Yb3+ in oxyfluoride glass ceramics,” Chin. Phys. Lett. 25(6), 2078–2080 (2008). [CrossRef]
  13. G. W. Shu, J. Y. Lin, H. T. Jian, J. L. Shen, S. C. Wang, C. L. Chou, W. C. Chou, C. H. Wu, C. H. Chiu, H. C. Kuo, “Optical coupling from InGaAs subcell to InGaP subcell in InGaP/InGaAs/Ge multi-junction solar cells,” Opt. Express 21(S1), A123–A130 (2013). [CrossRef] [PubMed]
  14. Q. Y. Zhang, X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010). [CrossRef]
  15. J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Kramer, H. U. Gudel, A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010). [CrossRef]
  16. R. Reisfeld, Lasers and Excited States of Rare-Earth (Springer-Verlag, 1977).
  17. Z. J. Liu, L. Y. Yang, N. Dai, Y. Chu, Q. Q. Chen, J. Y. Li, “Intense ultra-broadband down-conversion in co-doped oxide glass by multipolar interaction process,” Opt. Express 21(10), 12635–12642 (2013). [CrossRef] [PubMed]
  18. G. X. Xu, Rare Earth (Metallurgical Industry, 1995) (in Chinese).
  19. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1–2), 55–75 (1948). [CrossRef]
  20. M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer-Verlag, 2003).
  21. D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108(3), 630–633 (1957). [CrossRef]
  22. T. Trupke, M. A. Green, P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited