OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S5 — Sep. 9, 2013
  • pp: A841–A846

Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures

Rana Biswas and Erik Timmons  »View Author Affiliations

Optics Express, Vol. 21, Issue S5, pp. A841-A846 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1139 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A critical step to achieving higher efficiency solar cells is the broad band harvesting of solar photons. Although considerable progress has recently been achieved in improving the power conversion efficiency of organic solar cells, these cells still do not absorb upto ~50% of the solar spectrum. We have designed and developed an organic solar cell architecture that can boost the absorption of photons by 40% and the photo-current by 50% for organic P3HT-PCBM absorber layers of typical device thicknesses. Our solar cell architecture is based on all layers of the solar cell being patterned in a conformal two-dimensionally periodic photonic crystal architecture. This results in very strong diffraction of photons- that increases the photon path length in the absorber layer, and plasmonic light concentration near the patterned organic-metal cathode interface. The absorption approaches the Lambertian limit. The simulations utilize a rigorous scattering matrix approach and provide bounds of the fundamental limits of nano-photonic light absorption in periodically textured organic solar cells. This solar cell architecture has the potential to increase the power conversion efficiency to 10% for single band gap organic solar cells utilizing long-wavelength absorbers.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: May 10, 2013
Revised Manuscript: June 25, 2013
Manuscript Accepted: June 25, 2013
Published: August 14, 2013

Rana Biswas and Erik Timmons, "Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures," Opt. Express 21, A841-A846 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun 4, 1446–1455 (2013). [CrossRef] [PubMed]
  2. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012). [CrossRef]
  3. J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li, Y. Yang, “A robust inter-connecting layer for achieving high performance tandem polymer solar cells,” Adv. Mater. 23(30), 3465–3470 (2011). [CrossRef] [PubMed]
  4. S. H. Park, A. Roy, S. Beaupre´, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009). [CrossRef]
  5. T. Soga, Nanostructured Materials for Solar Energy Conversion (Elsevier Science, 2006).
  6. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009). [CrossRef]
  7. H. Shen, P. Bienstman, B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009). [CrossRef]
  8. S. Vedraine, P. Torchio, D. Duche´, F. Flory, J.-J. Simon, J. Le Rouzo, L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. 95, S57–S64 (2011). [CrossRef]
  9. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008). [CrossRef]
  10. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008). [CrossRef]
  11. F. Xie, W. C. H. Choy, C. C. D. Wang, W. Sha, D. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99(15), 153304 (2011). [CrossRef]
  12. J. You, X. Li, F.-X. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, Y. Yang, “Surface plasmon and scattering-enhanced low bandgap polymer solar cell by a metal grating back electrode,” Adv. Eng. Mater. 2(10), 1203–1207 (2012). [CrossRef]
  13. R. Meier, C. Birkenstock, C. M. Palumbiny, P. Müller-Buschbaum, “Efficiency-improved organic solar cells based on plasticizer assisted soft embossed PEDOT:PSS layers,” Phys. Chem. Chem. Phys. 14(43), 15088–15098 (2012). [CrossRef] [PubMed]
  14. K. Q. Le, A. Abass, B. Maes, P. Bienstman, A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012). [CrossRef] [PubMed]
  15. R. Biswas, C. Xu, “Nano-crystalline solar cell architecture with absorption beyond the classical 4n2 limit,” Opt. Express 19(S4), A664–A672 (2011). [CrossRef]
  16. K. S. Nalwa, S. Chaudhary, “Design of light-trapping microscale-textured surfaces for efficient organic solar cells,” Opt. Express 18(5), 5168–5178 (2010). [CrossRef] [PubMed]
  17. J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, V. Dalal, “A Novel photonic-plasmonic structure for enhancing Light Absorption in Thin Film Solar Cells,” Appl. Phys. Lett. 99(13), 131114 (2011). [CrossRef]
  18. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982). [CrossRef]
  19. A. J. Moule, K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymer layers,” Appl. Phys. Lett. 91(6), 061901 (2007). [CrossRef]
  20. T. Tiedje, E. Yablonovitch, G. D. Cody, B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. ED-31, 711–716 (1984).
  21. E. A. Schiff, “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals,” J. Appl. Phys. 110(10), 104501 (2011). [CrossRef]
  22. R. Biswas, C. Xu, “Photonic and Plasmonic Crystal based Enhancement of Solar Cells- Theory of Overcoming the Lambertian Limit,” J. Non-Cryst. Solids 358(17), 2289–2294 (2012). [CrossRef]
  23. Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  24. S. B. Mallick, M. Agrawal, P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010). [CrossRef] [PubMed]
  25. S. E. Han, G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010). [CrossRef] [PubMed]
  26. E. D. Palik, The Electronic Handbook of Optical Constants of Solids (Academic Press, 1999).
  27. K. S. Nalwa, J. M. Park, K.-M. Ho, S. Chaudhary, “On realizing higher efficiency polymer solar cells using a textured substrate platform,” Adv. Mater. 23(1), 112–116 (2011). [CrossRef] [PubMed]
  28. D. Zhou, R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008). [CrossRef]
  29. Nearly ideal loss-free metal can be achieved by increasing the imaginary part of the refractive index n2 in the metal by a large factor (200) that prevents the electromagnetic fields from penetrating within the metal.
  30. F.-J. Haug, K. Söderström, A. Naqavi, C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited