OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S5 — Sep. 9, 2013
  • pp: A872–A882

Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells

Chenxi Lin, Luis Javier Martínez, and Michelle L. Povinelli  »View Author Affiliations


Optics Express, Vol. 21, Issue S5, pp. A872-A882 (2013)
http://dx.doi.org/10.1364/OE.21.00A872


View Full Text Article

Enhanced HTML    Acrobat PDF (1628 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We design silicon membranes with nanohole structures with optimized complex unit cells that maximize broadband absorption. We fabricate the optimized design and measure the optical absorption. We demonstrate an experimental broadband absorption about 3.5 times higher than an equally-thick thin film.

© 2013 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: June 3, 2013
Revised Manuscript: August 2, 2013
Manuscript Accepted: August 5, 2013
Published: August 19, 2013

Citation
Chenxi Lin, Luis Javier Martínez, and Michelle L. Povinelli, "Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells," Opt. Express 21, A872-A882 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S5-A872


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  3. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11(12), 1017–1022 (2012). [PubMed]
  4. M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express21(S2Suppl 2), A268–A275 (2013). [CrossRef] [PubMed]
  5. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011). [CrossRef] [PubMed]
  6. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(2), 023825 (2008). [CrossRef]
  7. H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett.35(20), 3378–3380 (2010). [CrossRef] [PubMed]
  8. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express19(S5Suppl 5), A1148–A1154 (2011). [CrossRef] [PubMed]
  9. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett.36(10), 1884–1886 (2011). [CrossRef] [PubMed]
  10. X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express19(S4Suppl 4), A841–A850 (2011). [CrossRef] [PubMed]
  11. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B86(4), 041404 (2012). [CrossRef]
  12. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett.101(17), 173902 (2012). [CrossRef]
  13. C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express20(S1), A125–A132 (2012). [CrossRef] [PubMed]
  14. A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett.100(18), 181110 (2012). [CrossRef]
  15. V. Ganapati, O. D. Miller, and E. Yablonovitch, “Spontaneous symmetry breaking in the optimization of subwavelength solar cell textures for light trapping,” in Photovoltaic Specialists Conference (PVSC),201238th IEEE, 2012), 001572–001576. [CrossRef]
  16. M. Li, X. Hu, Z. Ye, K. M. Ho, J. Cao, and M. Miyawaki, “Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation,” Opt. Lett.31(23), 3498–3500 (2006). [CrossRef] [PubMed]
  17. D. F. Edwards, “Silicon (Si),” in Handbook of optical constants of solids, E.D.Palik, ed. (Academic, 1985).
  18. ASTM, “Air Mass 1.5 Spectra”, http://rredc.nrel.gov/solar/spectra/am1.5 .
  19. S. E. Han and G. Chen, “Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10(11), 4692–4696 (2010). [CrossRef] [PubMed]
  20. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express16(17), 13090–13103 (2008). [CrossRef] [PubMed]
  21. K. Sakoda, Optical properties of photonic crystals, 2nd ed. (Springer, 2004).
  22. Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett.93(6), 061106 (2008). [CrossRef]
  23. C. Lin, L. J. Martínez, and M. L. Povinelli, Fabrication of transferrable, fully-suspended silicon photonic crystal membranes exhibiting vivid structural color and high-Q guided resonance, submitted.
  24. M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,” Opt. Express13(7), 2487–2502 (2005). [CrossRef] [PubMed]
  25. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009). [CrossRef] [PubMed]
  26. S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002). [CrossRef]
  27. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73(11), 115126 (2006). [CrossRef]
  28. Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett.109(17), 173901 (2012). [CrossRef] [PubMed]
  29. G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express21(S3), A515–A527 (2013). [CrossRef]
  30. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals:Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited