OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A1028–A1034

Luminescence inverse method For CPV optical characterization

R. Herrero, C. Domínguez, S. Askins, I. Antón, and G. Sala  »View Author Affiliations

Optics Express, Vol. 21, Issue S6, pp. A1028-A1034 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1712 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The luminescence inverse method may be used to optically characterize a concentrator photovoltaic module. With this method, the module angular transmission is obtained by evaluating the light emission of a forward biased module. The influence of the emission of the cell when measuring the angular transmission is evaluated, and the process of building a global angular transmission from the set of individual optics-cell unit functions is explained. A case study of a module composed by several optics-cell units is presented. In order to validate the proposed measurement, results for five different CPV technologies are compared for both direct methods (i.e., solar simulator) and indirect methods (i.e., Luminescence inverse method).

© 2013 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Concentrators

Original Manuscript: July 17, 2013
Revised Manuscript: September 27, 2013
Manuscript Accepted: October 3, 2013
Published: October 15, 2013

R. Herrero, C. Domínguez, S. Askins, I. Antón, and G. Sala, "Luminescence inverse method For CPV optical characterization," Opt. Express 21, A1028-A1034 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Rabl, P. Bendt, “Effect of circumsolar radiation on performance of focusing collectors,” J. Sol. Energy Eng. 104(3), 237 (1982). [CrossRef]
  2. C. Domínguez, I. Antón, G. Sala, “Solar simulator for concentrator photovoltaic systems,” Opt. Express 16(19), 14894–14901 (2008). [CrossRef] [PubMed]
  3. A. Parretta, A. Antonini, E. Milan, M. Stefancich, G. Martinelli, M. Armani, “Optical efficiency of solar concentrators by a reverse optical path method,” Opt. Lett. 33(18), 2044–2046 (2008). [CrossRef] [PubMed]
  4. J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99(15), 151113 (2011). [CrossRef]
  5. R. Winston, “Thermodynamically efficient solar concentrators,” J. Photon. Energy,2 025501 (2012).
  6. R. Herrero,  C. Domínguez, S. Askins, I. Antón, G. Sala, and J. Berrios, “Angular Transmission Characterization of CPV Modules Based On CCD Measurements,” 6th International Conference on Concentrating Photovoltaic Systems, A. W. Betts, F. Dimroth, R. D. McConnell, y G. Sala, Eds. Melville: Amer Inst Physics, 131–134 (2010). [CrossRef]
  7. V. M. Andreev, V. A. Grilikhes, and V. D. Rumyantsev, Photovoltaic Conversion of Concentrated Sunlight (John Wiley & Sons, 1997) Chap. 4.
  8. V. D. Rumyantsev, M. Z. Shvarts, “A luminescence method for testing normal operation of solar modules and batteries based on AlGaAs solar cells with radiation concentrators,” Geliotekhnika 28, 5 (1992).
  9. R. Herrero, C. Domínguez, S. Askins, I. Antón, G. Sala, “Two-dimensional angular transmission characterization of CPV modules,” Opt. Express 18(4S4), A499–A505 (2010). [CrossRef] [PubMed]
  10. P. Espinet, et al., “Electroluminescence characterization for III-V multi-junction solar cells,” Photovolt. Spec. Conf. 33rd IEEE, 147 (2008).
  11. C. Honsberg, M. Z. Bernett, “Shunt effects in polycrystalline GaAs solar cells,” Photovolt. Spec. Conf. 21st IEEE, 1, 772-776 (1990).
  12. K. Araki et al.,”Development of a metal homogenizer for concentrator monolithic multi-junction-cells,” Photovolt. Spec. Conf. 29th IEEE, 1572–1575 (2002).
  13. I. Antón, G. Sala, “Losses caused by dispersion of optical parameters and misalignments in PV concentrators,” Prog. Photovolt. Res. Appl. 13(4), 341–352 (2005). [CrossRef]
  14. E. Yablonovitch, O. D. Miller, and S. R. Kurtz, “The opto-electronic physics that broke the efficiency limit in solar cells,” Photovolt. Spec. Conf. 38th IEEE, 001556-001559 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited