OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A1052–A1064

The versatile designs and optimizations for cylindrical TiO2-based scatterers for solar cell anti-reflection coatings

Albert Lin, Yan-Kai Zhong, and Sze-Ming Fu  »View Author Affiliations


Optics Express, Vol. 21, Issue S6, pp. A1052-A1064 (2013)
http://dx.doi.org/10.1364/OE.21.0A1052


View Full Text Article

Enhanced HTML    Acrobat PDF (2118 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The anti-reflection coating(ARC) based on dielectric nano-particles has been recently proposed as a new way to achieve the low reflectance required for solar cell front surfaces. In this scenario, the Mie modes associated with the dielectric nano-particles are utilized to facilitate photon forward scattering. In this work, versatile designs together with systematically optimized geometry are examined, for the ARCs based on dielectric scatterers. It is found that the Si3N4-TiO2 or SiO2-TiO2 stack is capable of providing low reflectance while maintaining a flat and passivated ARC-semiconductor interface which can be beneficial for reduced interface recombination and prevent VOC degradation associated with topography on the active materials. It is also confirmed that the plasmonic nano-particles placed at the front side of solar cells is not a preferred scheme, even with thorough geometrical optimization. At the ultimate design based on mixed graded index(GI) Mie-scattering, the averaged reflectance can be as low as 0.25%. Such a low reflectance is currently only achievable by ultra-long silicon nano-tips, but silicon nano-tips introduce severe surface recombination. On the other hand, the mixed GI Mie design preserves a flat and passivated ARC-silicon interface, with total thickness reduced to 279.8nm, much thinner than 1.6μm for silicon nanotips. In addition, the light trapping capability of mixed GI Mie design is much better than silicon nanotips. In fact, when compared to the state-of-art TiO2 light trapping anti-reflection coating, the mixed GI Mie design provides same light trapping capability while providing much lower reflectance.

© 2013 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(290.4020) Scattering : Mie theory
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: September 6, 2013
Revised Manuscript: September 21, 2013
Manuscript Accepted: October 13, 2013
Published: October 23, 2013

Citation
Albert Lin, Yan-Kai Zhong, and Sze-Ming Fu, "The versatile designs and optimizations for cylindrical TiO2-based scatterers for solar cell anti-reflection coatings," Opt. Express 21, A1052-A1064 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S6-A1052


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011). [CrossRef] [PubMed]
  2. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3, 692 (2012). [CrossRef] [PubMed]
  3. S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express19(25), 25729–25740 (2011). [CrossRef] [PubMed]
  4. Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?” Appl. Phys. Lett.96(7), 073111 (2010). [CrossRef]
  5. P. C. Tseng, M. A. Tsai, P. Yu, and H. C. Kuo, “Antireflection and light trapping of subwavelength surface structures formed by colloidal lithography on thin film solar cells,” Prog. Photovolt. Res. Appl.20(2), 135–142 (2012). [CrossRef]
  6. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008). [CrossRef]
  7. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]
  8. K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express20(S1), A39–A50 (2012). [CrossRef] [PubMed]
  9. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010). [CrossRef]
  10. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012). [CrossRef] [PubMed]
  11. A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express19(1), 128–140 (2011). [CrossRef] [PubMed]
  12. F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys.109(8), 084516 (2011). [CrossRef]
  13. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109(7), 073105 (2011). [CrossRef]
  14. S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energ. Mat. Sol.94(9), 1481–1486 (2010). [CrossRef]
  15. F. J. Beck, S. M. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010). [CrossRef]
  16. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  17. M. Yang, Z. Fu, F. Lin, and X. Zhu, “Incident angle dependence of absorption enhancement in plasmonic solar cells,” Opt. Express19(S4Suppl 4), A763–A771 (2011). [CrossRef] [PubMed]
  18. Rsoft, Rsoft CAD User Manual, 8.2 ed. (Rsoft Design Group, 2010).
  19. K.-H. Hung, T.-G. Chen, T.-T. Yang, P. Yu, C.-Y. Hong, Y.-R. Wu, and G.-C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 003322 - 003324.
  20. U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express19(S6Suppl 6), A1219–A1230 (2011). [CrossRef] [PubMed]
  21. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl.14(1), 13–24 (2006). [CrossRef]
  22. H. Stiebig, M. Schulte, C. Zahren, C. H. E. B. Rech, and P. Lechner, “Light trapping in thin-film silicon solar cells by nano-textured interfaces,” in Photonics for Solar Energy Systems, (SPIE, 2006), 619701.
  23. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett.91(6), 061116 (2007). [CrossRef]
  24. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004). [CrossRef]
  25. N. Senoussaoui, M. Krause, J. Muller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films451–452, 397–401 (2004). [CrossRef]
  26. S. S. Hegedus and R. Kaplan, “Analysis of quantum efficiency and optical enhancement in amorphous Si p–i–n solar cells,” Prog. Photovolt. Res. Appl.10(4), 257–269 (2002). [CrossRef]
  27. T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energ. Mat. Sol.74(1-4), 469–478 (2002). [CrossRef]
  28. U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett.99(18), 181105 (2011). [CrossRef]
  29. P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd Ed. (Prentice-Hall, 2006).
  30. C. AB, Comsol Multiphysics RF Module User Guide V 3.3 (2006).
  31. Synopsys, “Sentaurus Device EMW User Manual V. X-2005.10,” (2005), pp. 78–79.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited