OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A942–A952

Design and testing of a uniformly solar energy TIR-R concentration lenses for HCPV systems

S. C. Shen, S. J. Chang, C. Y. Yeh, and P. C. Teng  »View Author Affiliations


Optics Express, Vol. 21, Issue S6, pp. A942-A952 (2013)
http://dx.doi.org/10.1364/OE.21.00A942


View Full Text Article

Enhanced HTML    Acrobat PDF (2384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, total internal reflection-refraction (TIR-R) concentration (U-TIR-R-C) lens module were designed for uniformity using the energy configuration method to eliminate hot spots on the surface of solar cell and increase conversion efficiency. The design of most current solar concentrators emphasizes the high-power concentration of solar energy, however neglects the conversion inefficiency resulting from hot spots generated by uneven distributions of solar energy concentrated on solar cells. The energy configuration method proposed in this study employs the concept of ray tracing to uniformly distribute solar energy to solar cells through a U-TIR-R-C lens module. The U-TIR-R-C lens module adopted in this study possessed a 76-mm diameter, a 41-mm thickness, concentration ratio of 1134 Suns, 82.6% optical efficiency, and 94.7% uniformity. The experiments demonstrated that the U-TIR-R-C lens module reduced the core temperature of the solar cell from 108 °C to 69 °C and the overall temperature difference from 45 °C to 10 °C, and effectively relative increased the conversion efficiency by approximately 3.8%. Therefore, the U-TIR-R-C lens module designed can effectively concentrate a large area of sunlight onto a small solar cell, and the concentrated solar energy can be evenly distributed in the solar cell to achieve uniform irradiance and effectively eliminate hot spots.

© 2013 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(150.2945) Machine vision : Illumination design

ToC Category:
Solar Concentrators

History
Original Manuscript: May 20, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: September 10, 2013
Published: September 18, 2013

Citation
S. C. Shen, S. J. Chang, C. Y. Yeh, and P. C. Teng, "Design and testing of a uniformly solar energy TIR-R concentration lenses for HCPV systems," Opt. Express 21, A942-A952 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S6-A942


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. L. Panwar, S. C. Kaushik, and S. Kothari, “Role of renewable energy sources in environmental protection: A review,” Renew. Sustain. Energy Rev.15(3), 1513–1524 (2011). [CrossRef]
  2. H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci.2(2), 174–192 (2009). [CrossRef]
  3. R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Developments and designs of solar engineering Fresnel lenses”, Proceedings Symposium on Energy Engineering2, pp. 759–765, 2000.
  4. R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Shaped nonimaging Fresnel lenses,” J. Opt. A, Pure Appl. Opt.2(2), 112–116 (2000). [CrossRef]
  5. W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev.15(6), 2588–2606 (2011). [CrossRef]
  6. C. Sierra and A. J. Vazquez, “High solar energy concentration with a Fresnel lens,” J. Mater. Sci.40(6), 1339–1343 (2005). [CrossRef]
  7. A. Luque and V. Andreev, Concentrator Photovoltaics (Berlin: Springer, 2007), Chap.10.
  8. K. K. Chong, S. L. Lau, T. K. Yew, and C. L. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev.19, 598–612 (2013). [CrossRef]
  9. A. Cvetkovic, M. Hernandez, P. Benitez, and ., “The XR nonimaging photovoltaic concentrator,” Proc. SPIE6670, 667005.1–667005.10 (2007).
  10. O. Dross, R. Mohedano, M. Hernandez, A. Cvetkovic, J. C. Minano, and P. Benitez, “Kohler integrators embedded into illumination optics add functionality,” Proc. SPIE7103, 71030G, 12 (2008). [CrossRef]
  11. M. Hernandez, A. Cvetkovic, P. Benitez, J. C. Miñano, W. Falicoff, Y. Sun, J. Chaves, and R. Mohedano, “CPV and illumination systems based on XR-Köhler devices,” Proc. SPIE7785, 77850A, 77850A-11 (2010). [CrossRef]
  12. P. Benitez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator,” Opt. Express18(S1), A25–A40 (2010). [CrossRef]
  13. P. Zamora, P. Benitez, R. Mohedano, A. Cvetkovic, J. Vilaplana, Y. L. M. Hernández, J. Chaves, and J. C. Miñano, “Experimental characterization of Fresnel-Köhler concentrators,” J. Photon. Energy2(1), 021806 (2012). [CrossRef]
  14. W. P. Mulligan, A. Terao, S. G. Daroczi, O. Chao Pujol, M. J. Cudzinovic, P. J. Verlinden, R. M. Swanson, P. Benitez, and J. C. Minano, “A flat-plate concentrator: micro-concentrator design overview,” Photovoltaic Specialists Conference, 1495–1497 (2000). [CrossRef]
  15. M. Hernandez, P. Benitez, J. C. Minano, J. L. Alvarez, V. Diaz, and J. Alonso, “Sunlight spectrum on cell through very high concentration optic key points for high gain photovoltaic solar energy concentrators,” Proc. SPIE5962, 298–306 (2005).
  16. K. Nishioka, Y. Ota, K. Tamura, and K. Araki, “Heat reduction of concentrator photovoltaic module using high radiation coating,” Surf. Coat. Tech.215, 472–475 (2013). [CrossRef]
  17. A. Barnett, D. Kirkpatrick, and C. Honsberg, “Very high efficiency solar cells,” Proc. SPIE6338, 63380N, 63380N-12 (2006). [CrossRef]
  18. K. Kreske, “Optical design of a solar flux homogenizer for concentrator photovoltaics,” Appl. Opt.41(10), 2053–2058 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited