OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A953–A963

Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells

Ya-Ju Lee, Yung-Chi Yao, Meng-Tsan Tsai, An-Fan Liu, Min-De Yang, and Jiun-Tsuen Lai  »View Author Affiliations


Optics Express, Vol. 21, Issue S6, pp. A953-A963 (2013)
http://dx.doi.org/10.1364/OE.21.00A953


View Full Text Article

Enhanced HTML    Acrobat PDF (3539 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD’s unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD’s dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell’s counterpart without integrating CdSe QDs.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.1210) Thin films : Antireflection coatings
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Photovoltaics

History
Original Manuscript: July 22, 2013
Revised Manuscript: September 13, 2013
Manuscript Accepted: September 15, 2013
Published: September 20, 2013

Citation
Ya-Ju Lee, Yung-Chi Yao, Meng-Tsan Tsai, An-Fan Liu, Min-De Yang, and Jiun-Tsuen Lai, "Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells," Opt. Express 21, A953-A963 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S6-A953


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y.-J. Lee, Y.-C. Yao, and C.-H. Yang, “Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells,” Opt. Express21(S1Suppl 1), A7–A14 (2013). [CrossRef] [PubMed]
  2. Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, and Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express20(4), 3479–3489 (2012). [CrossRef] [PubMed]
  3. Y.-J. Lee, M.-H. Lee, C.-M. Cheng, and C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on patterned sapphire substrates,” Appl. Phys. Lett.98(26), 263504 (2011). [CrossRef]
  4. X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells by multiple-discrete-layer tailored- and low- refractive-index anti-reflection coatings,” Adv. Funct. Mater.23(5), 583–590 (2013). [CrossRef]
  5. J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W.-C. Lai, and L.-C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett.30(3), 225–227 (2009). [CrossRef]
  6. M. C. Wei, S. J. Chang, C. Y. Tsia, C. H. Liu, and S. C. Chen, “SiNx deposited by in-line PECVD for multi-crystalline silicon solar cells,” Sol Energ Mat Sol C.80(2), 215–219 (2006).
  7. A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present State of the Art and Important Challenges,” Photovoltaics, IEEE Journal of2(3), 276–293 (2012). [CrossRef]
  8. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007). [CrossRef]
  9. S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science327(5962), 185–187 (2010). [CrossRef] [PubMed]
  10. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013). [CrossRef] [PubMed]
  11. F. Hetsch, X. Xu, H. Wang, S. V. Kershaw, and A. L. Rohach, “Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device toplogies,” J. Phys. Chem. Lett.2(15), 1879–1887 (2011). [CrossRef]
  12. M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett.102(3), 033901 (2013). [CrossRef]
  13. Sharp Develops Concentrator Solar Cell with World's Highest Conversion Efficiency of 44.4%,” http://sharp-world.com/corporate/news/130614.html (2013)
  14. J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, and K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008). [CrossRef]
  15. K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies2(3), 504–530 (2009). [CrossRef]
  16. L. A. Kosyachenko, Solar Cells-Silicon Wafer-Based Technologies (InTech, Rijeka, Croatia, 2011), p. 335–337.
  17. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510 (1961). [CrossRef]
  18. M. W. Wanlass, S. P. Ahrenkiel, R. K. Ahrenkiel, D. S. Albin, J. J. Carapella, A. Duda, J. F. Geisz, S. Kurtz, T. Moriarty, R. J. Wehrer, and B. Wernsman, “Lattice-mismatched approaches for high-performance, III-V photovoltaic energy converters,” in Proceedings of the 31th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 530–535. [CrossRef]
  19. R. R. King, M. Haddad, T. Isshiki, P. Colter, J. Ermer, H. Yoon, D. E. Joslin, and N. H. Karam, “Next-generation, high-efficiency III-V multijunction solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 998–1001. [CrossRef]
  20. F. Dimroth, U. Schubert, and A. W. Bett, “25.5% efficient Ga0.35In0.65P/Ga0.83In0.17 as tandem solar cells grown on GaAs substrates,” IEEE Electron Dev.21(5), 209–211 (2000). [CrossRef]
  21. A. J. Nozik, “Quantum dot solar cells,” Physica E14(1–2), 115–120 (2002). [CrossRef]
  22. R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion,” Phys. Rev. Lett.92(18), 186601 (2004). [CrossRef] [PubMed]
  23. A. Franceschetti, J. M. An, and A. Zunger, “Impact ionization can explain carrier multiplication in PbSe quantum dots,” Nano Lett.6(10), 2191–2195 (2006). [CrossRef] [PubMed]
  24. M. Wolf, R. Brendel, J. H. Werner, and H. J. Queisser, “Solar cell efficiency and carrier multiplication in Si1-xGex alloys,” J. Appl. Phys.83(8), 4213–4221 (1998). [CrossRef]
  25. C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen, and Y.-F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano4(10), 5849–5854 (2010). [CrossRef] [PubMed]
  26. Y.-J. Lee, C.-J. Lee, and C.-M. Cheng, “Enhancing the conversion efficiency of red emission by spin-coating CdSe quantum dots on the green nanorod light-emitting diode,” Opt. Express18(S4), A554–A561 (2010). [CrossRef] [PubMed]
  27. H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, “Optical properties of (AlxGa1-x)0.5In0.5P quaternary alloys,” Jpn. J. Appl. Phys.33(1A), 186–192 (1994).
  28. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set) (McGraw Hill Professional, New York, 2009).
  29. D. Souri and K. Shomalian, “Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60−x) V2O5–40TeO2–xSb2O3 glasses,” J. Non-Cryst. Solids355(31–33), 1597–1601 (2009). [CrossRef]
  30. ASTMG173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).
  31. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited