OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A991–A996

InGaN working electrodes with assisted bias generated from GaAs solar cells for efficient water splitting

Shu-Yen Liu, J. K. Sheu, Yu-Chuan Lin, Yu-Tong Chen, S. J. Tu, M. L. Lee, and W. C. Lai  »View Author Affiliations

Optics Express, Vol. 21, Issue S6, pp. A991-A996 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1844 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hydrogen generation through water splitting by n-InGaN working electrodes with bias generated from GaAs solar cell was studied. Instead of using an external bias provided by power supply, a GaAs-based solar cell was used as the driving force to increase the rate of hydrogen production. The water-splitting system was tuned using different approaches to set the operating points to the maximum power point of the GaAs solar cell. The approaches included changing the electrolytes, varying the light intensity, and introducing the immersed ITO ohmic contacts on the working electrodes. As a result, the hybrid system comprising both InGaN-based working electrodes and GaAs solar cells operating under concentrated illumination could possibly facilitate efficient water splitting.

© 2013 Optical Society of America

OCIS Codes
(310.3840) Thin films : Materials and process characterization
(310.4925) Thin films : Other properties (stress, chemical, etc.)
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Solar Fuel

Original Manuscript: August 14, 2013
Revised Manuscript: September 26, 2013
Manuscript Accepted: September 30, 2013
Published: October 9, 2013

Shu-Yen Liu, J. K. Sheu, Yu-Chuan Lin, Yu-Tong Chen, S. J. Tu, M. L. Lee, and W. C. Lai, "InGaN working electrodes with assisted bias generated from GaAs solar cells for efficient water splitting," Opt. Express 21, A991-A996 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972). [CrossRef] [PubMed]
  2. W. J. Youngblood, S. H. A. Lee, Y. Kobayashi, E. A. Hernandez-Pagan, P. G. Hoertz, T. A. Moore, A. L. Moore, D. Gust, T. E. Mallouk, “Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell,” J. Am. Chem. Soc. 131(3), 926–927 (2009). [CrossRef] [PubMed]
  3. Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R. L. Withers, “An orthophosphate semiconductor with photooxidation properties under visible-light irradiation,” Nat. Mater. 9(7), 559–564 (2010). [CrossRef] [PubMed]
  4. I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007). [CrossRef]
  5. J. Li, J. Y. Lin, H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett. 93(16), 162107 (2008). [CrossRef]
  6. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741 (2002). [CrossRef]
  7. K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-Type AlxGa1−xN and InyGa1−yN alloys,” J. Electrochem. Soc. 154(2), B175–B179 (2007). [CrossRef]
  8. W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett. 92(26), 262110 (2008). [CrossRef]
  9. K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010). [CrossRef]
  10. M. Li, W. Luo, B. Liu, X. Zhao, Z. Li, D. Chen, T. Yu, Z. Xie, R. Zhang, Z. Zou, “Remarkable enhancement in photocurrent of In0.20Ga0.80N photoanode by using an electrochemical surface treatment,” Appl. Phys. Lett. 99(11), 112108 (2011). [CrossRef]
  11. O. Khaselev, J. A. Turner, “A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting,” Science 280(5362), 425–427 (1998). [CrossRef] [PubMed]
  12. A. Currao, “Photoelectrochemical water splitting,” Chimia (Aarau) 61(12), 815–819 (2007). [CrossRef]
  13. A. Siegel, T. Schott, “Optimization of photovoltaic hydrogen production,” Int. J. Hydrogen Energy 13(11), 659–675 (1988). [CrossRef]
  14. M. L. Lee, J. K. Sheu, C. C. Hu, “Non-alloyed Cr/Au Ohmic contacts to n-GaN,” Appl. Phys. Lett. 91(18), 182106 (2007). [CrossRef]
  15. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, “The indium tin oxide Ohmic contact to highly doped n-GaN,” Solid-State Electron. 43(11), 2081–2084 (1999). [CrossRef]
  16. S. Y. Liu, Y. C. Lin, J. C. Ye, S. J. Tu, F. W. Huang, M. L. Lee, W. C. Lai, J. K. Sheu, “Hydrogen gas generation using n-GaN photoelectrodes with immersed Indium Tin Oxide ohmic contacts,” Opt. Express 19(S6Suppl 6), A1196–A1201 (2011). [CrossRef] [PubMed]
  17. S. Y. Liu, J. K. Sheu, M. L. Lee, Y. C. Lin, S. J. Tu, F. W. Huang, W. C. Lai, “Immersed finger-type indium tin oxide ohmic contacts on p-GaN photoelectrodes for photoelectrochemical hydrogen generation,” Opt. Express 20(S2Suppl 2), A190–A196 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited