OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 608–617

Adiabatically-tapered fiber mode multiplexers

S. Yerolatsitis, I. Gris-Sánchez, and T. A. Birks  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 608-617 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2773 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Simple all-fiber three-mode multiplexers were made by adiabatically merging three dissimilar single-mode cores into one multimode core. This was achieved by collapsing air holes in a photonic crystal fiber and (in a separate device) by fusing and tapering separate telecom fibers in a fluorine-doped silica capillary. In each case the LP01 mode and both LP11 modes were individually excited from three separate input cores, with losses below 0.3 and 0.7 dB respectively and mode purities exceeding 10 dB. Scaling to more modes is challenging, but would be assisted by using single-mode fibers with a smaller ratio of cladding to core diameter.

© 2014 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fibers, Fiber Devices, and Amplifiers

Original Manuscript: November 7, 2013
Manuscript Accepted: November 19, 2013
Published: January 6, 2014

Virtual Issues
European Conference and Exhibition on Optical Communication (2013) Optics Express
January 31, 2014 Spotlight on Optics

S. Yerolatsitis, I. Gris-Sánchez, and T. A. Birks, "Adiabatically-tapered fiber mode multiplexers," Opt. Express 22, 608-617 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Y. Song, I. K. Hwang, S. H. Yun, B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm,” IEEE Photon. Technol. Lett. 14(4), 501–503 (2002). [CrossRef]
  2. N. Riesen, J. D. Love, J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24(5), 344–346 (2012). [CrossRef]
  3. R. Ryf, M. A. Mestre, A. H. Gnauck, S. Randel, C. Schmidt, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle, “Low-loss mode coupler for mode-multiplexed transmission in few-mode fiber,” in Proceedings of Optical Fiber Communication Conference (2012), paper PDP5B.5.
  4. N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012). [CrossRef] [PubMed]
  5. N. K. Fontaine, S. G. Leon-Saval, R. Ryf, J. R. Salazar Gil, B. Ercan, and J. Bland-Hawthorn, “Mode selective dissimilar fiber photonic-lantern spatial multiplexers for few-mode fiber,” in Proceedings of European Conference on Optical Communication (2013), paper PD1.C.3.
  6. S. Yerolatsitis and T. A. Birks, “Three-mode multiplexer in photonic crystal fibre,” in Proceedings of European Conference on Optical Communication (2013), paper Mo.4.A.4.
  7. S. Yerolatsitis and T. A. Birks, “Tapered mode multiplexer based on standard single-mode fibre,” in Proceedings of European Conference on Optical Communication (2013), paper PD1.C.1.
  8. E. Kapon, R. N. Thurston, “Multichannel waveguide junctions for guided-wave optics,” Appl. Phys. Lett. 50(24), 1710–1712 (1987). [CrossRef]
  9. T. A. Birks, D. O. Culverhouse, S. G. Farwell, P. St. J. Russell, “2 x 2 Single-mode fiber routing switch,” Opt. Lett. 21(10), 722–724 (1996). [CrossRef] [PubMed]
  10. K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett. 32(4), 328–330 (2007). [CrossRef] [PubMed]
  11. A. Witkowska, S. G. Leon-Saval, A. Pham, T. A. Birks, “All-fiber LP11 mode convertors,” Opt. Lett. 33(4), 306–308 (2008). [CrossRef] [PubMed]
  12. BeamPROP, http://optics.synopsys.com/ .
  13. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett. 31(18), 2672–2674 (2006). [CrossRef] [PubMed]
  14. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007). [CrossRef] [PubMed]
  15. D. B. Mortimore, “Wavelength-flattened fused couplers,” Electron. Lett. 21(17), 742–743 (1985). [CrossRef]
  16. T. A. Birks, B. J. Mangan, A. Díez, J. L. Cruz, D. F. Murphy, ““Photonic lantern” spectral filters in multi-core fibre,” Opt. Express 20(13), 13996–14008 (2012). [CrossRef] [PubMed]
  17. D. B. Mortimore, J. W. Arkwright, “Performance tuning of 1 × 7 wavelength-flattened fused fibre couplers,” Electron. Lett. 26(18), 1442–1443 (1990). [CrossRef]
  18. D. Noordegraaf, P. M. W. Skovgaard, M. D. Nielsen, J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express 17(3), 1988–1994 (2009). [CrossRef] [PubMed]
  19. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEE Proc. Pt. J 138, 343–354 (1991). [CrossRef]
  20. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), 651–653.
  21. M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989). [CrossRef]
  22. T. A. Birks, G. J. Pearce, D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14(20), 9483–9490 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1724 KB)     
» Media 2: MOV (1366 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited