OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7953–7961

Mechanical analysis of the optical tweezers in time-sharing regime

Lingyao Yu and Yunlong Sheng  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 7953-7961 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1382 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Time-sharing optical tweezers is a versatile technique to realize multiple traps for manipulating biological cells and macromolecules. It has been based on an intuitive hypothesis that the trapped viscoelastic object does not “sense” blinking of the optical beam. We present a quantitative analysis using mechanical modeling and numerical simulation, showing that the local stress and strain are jumping all the time and at all locations with the jumping amplitude independent of the recovery time of the viscoelastic material and the jumping frequency. Effects of the stress and strain jumping on the object deformation and the internal energy dissipation are analyzed.

© 2014 Optical Society of America

OCIS Codes
(160.1435) Materials : Biomaterials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: December 19, 2013
Revised Manuscript: March 9, 2014
Manuscript Accepted: March 21, 2014
Published: March 28, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Lingyao Yu and Yunlong Sheng, "Mechanical analysis of the optical tweezers in time-sharing regime," Opt. Express 22, 7953-7961 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. M. Fazal, S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011). [CrossRef] [PubMed]
  2. M. Dao, C. T. Lim, S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003). [CrossRef]
  3. M. T. Wei, A. Zaorski, H. C. Yalcin, J. Wang, S. N. Ghadiali, A. Chiou, H. D. Ou-Yang, “A comparative study of living cell micromechanical properties by oscillatory optical tweezers,” Opt. Express 16(12), 8594–8603 (2008). [CrossRef] [PubMed]
  4. Y. Z. Yoon, J. Kotar, A. T. Brown, P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter 7(5), 2042–2051 (2011). [CrossRef]
  5. G. Pesce, G. Rusciano, A. Sasso, “Blinking optical tweezers for microrheology measurements of weak elasticity complex fluids,” Opt. Express 18(3), 2116–2126 (2010). [CrossRef] [PubMed]
  6. K. Visscher, S. P. Gross, S. M. Block, “Construction of Multiple-Beam Optical Traps with Nanometer-Resolution Position Sensing,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1066–1076 (1996). [CrossRef]
  7. Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H2O2 on the viscoelasticity of human erythrocytes: Experimental measurement and theoretical analysis,” J. Biophotonics, published online (2013), http://onlinelibrary.wiley.com/doi/10.1002/jbio.201300081/abstract .
  8. G. B. Liao, P. B. Bareil, Y. Sheng, A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16(3), 1996–2004 (2008). [CrossRef] [PubMed]
  9. P. B. Bareil, Y. Sheng, Y. Q. Chen, A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express 15(24), 16029–16034 (2007). [CrossRef] [PubMed]
  10. S. Rancourt-Grenier, M. T. Wei, J. J. Bai, A. Chiou, P. P. Bareil, P. L. Duval, Y. Sheng, “Dynamic deformation of red blood cell in dual-trap optical tweezers,” Opt. Express 18(10), 10462–10472 (2010). [CrossRef] [PubMed]
  11. E. V. Lyubin, M. D. Khokhlova, M. N. Skryabina, A. A. Fedyanin, “Cellular viscoelasticity probed by active rheology in optical tweezers,” J. Biomed. Opt. 17(10), 101510 (2012). [CrossRef] [PubMed]
  12. T. Sawetzki, C. D. Eggleton, S. A. Desai, D. W. M. Marr, “Viscoelasticity as a Biomarker for High-Throughput Flow Cytometry,” Biophys. J. 105(10), 2281–2288 (2013). [CrossRef] [PubMed]
  13. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissue, 2nd ed. (Springer, 1993), Chap. 2.
  14. B. L. McClain, I. J. Finkelstein, M. D. Fayer, “vibrational echo experiments on red blood cells: comparison of the dynamics of cytoplasmic and aqueous hemoglobin,” Chem. Phys. Lett. 392(4-6), 324–329 (2004). [CrossRef]
  15. R. Tran-Son-Tay, S. P. Sutera, P. R. Rao, “Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion,” Biophys. J. 46(1), 65–72 (1984). [CrossRef] [PubMed]
  16. S. Chien, K. L. Sung, R. Skalak, S. Usami, A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978). [CrossRef] [PubMed]
  17. L. Yu, Y. Sheng, A. Chiou, “Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers,” Opt. Express 21(10), 12174–12184 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MP4 (1819 KB)     
» Media 2: MP4 (1504 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited