OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 1018–1027

Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry

Franklin D. Fuller, Daniel E. Wilcox, and Jennifer P. Ogilvie  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 1018-1027 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a “drop-in” modification of the pulse-shaped pump-probe geometry two-dimensional Fourier transform spectrometer that significantly improves its performance by making the measurement background-free. The modification uses a hybrid diffractive optic/pulse-shaping approach that combines the advantages of background-free detection with the precise timing and phase-cycling capabilities enabled by pulse-shaping. In addition, we present a simple new method for accurate phasing of optically heterodyned two-dimensional spectra. We demonstrate the high quality of data obtainable with this approach by reporting two-dimensional Fourier transform electronic spectra of chlorophyll a in glycerol/water at 77 K.

© 2014 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(300.6550) Spectroscopy : Spectroscopy, visible
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:

Original Manuscript: November 8, 2013
Revised Manuscript: December 13, 2013
Manuscript Accepted: December 14, 2013
Published: January 9, 2014

Franklin D. Fuller, Daniel E. Wilcox, and Jennifer P. Ogilvie, "Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry," Opt. Express 22, 1018-1027 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Hybl, A. Yu, D. A. Farrow, D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106(34), 7651–7654 (2002). [CrossRef]
  2. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005). [CrossRef] [PubMed]
  3. K. L. M. Lewis, J. P. Ogilvie, “Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 3(4), 503–510 (2012). [CrossRef]
  4. N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. F. Kauffmann, J. Hauer, “Electronic double-quantum coherences and their impact on ultrafast spectroscopy: the example of β-carotene,” J. Phys. Chem. Lett. 1(23), 3366–3370 (2010). [CrossRef] [PubMed]
  5. K. W. Stone, D. B. Turner, K. Gundogdu, S. T. Cundiff, K. A. Nelson, “Exciton-exciton correlations revealed by two-quantum, two-dimensional Fourier transform optical spectroscopy,” Acc. Chem. Res. 42(9), 1452–1461 (2009). [CrossRef] [PubMed]
  6. K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009). [CrossRef] [PubMed]
  7. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003). [CrossRef] [PubMed]
  8. J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998). [CrossRef]
  9. M. L. Cowan, J. P. Ogilvie, R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004). [CrossRef]
  10. T. Brixner, T. Mancal, I. V. Stiopkin, G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004). [CrossRef] [PubMed]
  11. J. C. Vaughan, T. Hornung, K. W. Stone, K. A. Nelson, “Coherently controlled ultrafast four-wave mixing spectroscopy,” J. Phys. Chem. A 111(23), 4873–4883 (2007). [CrossRef] [PubMed]
  12. P. F. Tekavec, G. A. Lott, A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007). [CrossRef] [PubMed]
  13. P. F. Tian, D. Keusters, Y. Suzaki, W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300(5625), 1553–1555 (2003). [CrossRef] [PubMed]
  14. E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15(25), 16681–16689 (2007). [CrossRef] [PubMed]
  15. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16(22), 17420–17428 (2008). [CrossRef] [PubMed]
  16. U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33(23), 2851–2853 (2008). [CrossRef] [PubMed]
  17. E. Harel, A. F. Fidler, G. S. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 107(38), 16444–16447 (2010). [CrossRef] [PubMed]
  18. A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34(21), 3301–3303 (2009). [CrossRef] [PubMed]
  19. F. Milota, C. N. Lincoln, J. Hauer, “Precise phasing of 2D-electronic spectra in a fully non-collinear phase-matching geometry,” Opt. Express 21(13), 15904–15911 (2013). [CrossRef] [PubMed]
  20. V. I. Prokhorenko, A. Halpin, R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17(12), 9764–9779 (2009). [CrossRef] [PubMed]
  21. P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117(29), 6264–6269 (2013). [CrossRef] [PubMed]
  22. R. Augulis, D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011). [CrossRef] [PubMed]
  23. S. H. Shim, D. B. Strasfeld, Y. L. Ling, M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U. S. A. 104(36), 14197–14202 (2007). [CrossRef] [PubMed]
  24. S. M. G. Faeder, D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations,” J. Phys. Chem. A 103(49), 10489–10505 (1999). [CrossRef]
  25. J. M. Anna, E. E. Ostroumov, K. Maghlaoui, J. Barber, G. D. Scholes, “Two-dimensional electronic spectroscopy reveals ultrafast downhill energy transfer in photosystem I trimers of the cyanobacterium Thermosynechococcus elongatus,” J. Phys. Chem. Lett. 3(24), 3677–3684 (2012). [CrossRef]
  26. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18(11), 11015–11024 (2010). [CrossRef] [PubMed]
  27. M. D. Levenson, G. L. Eesley, “Polarization selective optical heterodyne-detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. 19(1), 1–17 (1979). [CrossRef]
  28. W. Xiong, M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett. 33(12), 1371–1373 (2008). [CrossRef] [PubMed]
  29. W. Rock, Y. L. Li, P. Pagano, C. M. Cheatum, “2D IR spectroscopy using four-wave mixing, pulse shaping, and IR upconversion: a quantitative comparison,” J. Phys. Chem. A 117(29), 6073–6083 (2013). [CrossRef] [PubMed]
  30. T. Wilhelm, J. Piel, E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22(19), 1494–1496 (1997). [CrossRef] [PubMed]
  31. S. Kane, J. Squier, “Grism-pair stretcher-compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification,” J. Opt. Soc. Am. B 14(3), 661–665 (1997). [CrossRef]
  32. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19(10), 737–739 (1994). [CrossRef] [PubMed]
  33. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000). [CrossRef]
  34. D. E. Wilcox, F. D. Fuller, J. P. Ogilvie, “Fast second-harmonic generation frequency-resolved optical gating using only a pulse shaper,” Opt. Lett. 38(16), 2980–2983 (2013). [CrossRef] [PubMed]
  35. Z. Y. Zhang, K. L. Wells, E. W. J. Hyland, H. S. Tan, “Phase-cycling schemes for pump-probe beam geometry two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 550, 156–161 (2012). [CrossRef]
  36. S. H. Shim, M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009). [CrossRef] [PubMed]
  37. D. Keusters, H. S. Tan, W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103(49), 10369–10380 (1999). [CrossRef]
  38. E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 104(36), 14203–14208 (2007). [CrossRef] [PubMed]
  39. L. Lepetit, G. Cheriaux, M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995). [CrossRef]
  40. G. D. Goodno, G. Dadusc, R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B 15(6), 1791–1794 (1998). [CrossRef]
  41. J. P. Ogilvie, M. Plazanet, G. Dadusc, R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q-band transient absorption and four-wave mixing studies,” J. Phys. Chem. B 106(40), 10460–10467 (2002). [CrossRef]
  42. V. P. Singh, A. F. Fidler, B. S. Rolczynski, G. S. Engel, “Independent phasing of rephasing and non-rephasing 2D electronic spectra,” J. Chem. Phys. 139(8), 084201 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited