OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 102–109

Flexible, compact WDM receivers using cascaded optical and electrical down-conversion

Hyun-chul Park, Molly Piels, Mingzhi Lu, Eli Bloch, Abi Sivananthan, Zach Griffith, Leif Johansson, John Bowers, Larry Coldren, and Mark Rodwell  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 102-109 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1701 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a super-channel flexible wavelength division multiplexing (WDM) receiver architecture. The receiver, which requires no optical filtering, only a pair (I and Q phases) of coherent optical detectors, and an electrical receiver system, can simultaneously recover multiple wavelength-multiplexed channels using cascaded optical and electrical down-conversion. The receiver data capacity increases in proportion to the number of electrical sub-carrier channels. The proposed receiver concept has been described using a six-channel WDM receiver, and a two-channel ( ± 25GHz) receiver IC, which is a key block of the WDM receiver, has been successfully demonstrated with two and three 2.5Gb/s binary-phase-shift-key (BPSK) modulated channels.

© 2013 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(250.5300) Optoelectronics : Photonic integrated circuits
(350.4010) Other areas of optics : Microwaves

ToC Category:
Subsystems for Optical Networks and Datacomms

Original Manuscript: October 8, 2013
Revised Manuscript: November 27, 2013
Manuscript Accepted: November 28, 2013
Published: December 23, 2013

Virtual Issues
European Conference and Exhibition on Optical Communication (2013) Optics Express

Hyun-chul Park, Molly Piels, Mingzhi Lu, Eli Bloch, Abi Sivananthan, Zach Griffith, Leif Johansson, John Bowers, Larry Coldren, and Mark Rodwell, "Flexible, compact WDM receivers using cascaded optical and electrical down-conversion," Opt. Express 22, 102-109 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Infinera, “Super-channels: DWDM Transmission at 100Gb/s and Beyond” WP-SC-10–2012 (2013).
  2. B. Zhang, C. Malouin, T. J. Schmidt, “Towards full band colorless reception with coherent balanced receivers,” Opt. Express 20(9), 10339–10352 (2012). [CrossRef] [PubMed]
  3. J. Renaudier, O. Bertran-Pardo, H. Mardoyan, P. Tran, G. Charlet, S. Bigo, A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, and J. Godin, “Spectrally efficient long-haul transmission of 22-Tb/s using 40-Gbaud PDM-16QAM with coherent detection,” OFC'2012 Conference, OW4C2 (2012). [CrossRef]
  4. X. Liu, S. Chandrasekhar, P. J. Winzer, T. Lotz, J. Carlson, J. Yang, G. Cheren, and S. Zederbaum, “21.5-Tb/s Guard-Banded Superchannel Transmission over 56x100-km (5600-km) ULAF Using 30-Gbaud Pilot-Free OFDM-16QAM Signals with 5.75-b/s/Hz Net Spectral Efficiency,” in Proceedings of ECOC’2012, post deadline Th3C5 (2012).
  5. T. Zami, “What is the Benefit of Elastic Superchannel for WDM Network?” in Proceedings of ECOC’2013, 22-26 Sept. 2013 (2013).
  6. O. Gerstel, M. Jinno, A. Lord, S. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012). [CrossRef]
  7. J. Renaudier, R. Rios-Muller, L. Schmalen, M. Salsi, P. Tran, G. Charlet, and S. Bigo, “1-Tb/s Transceiver Spanning Over Just Three 50-GHz Frequency Slots for Long-Haul Systems,” in Proceedings of ECOC’2013, post deadline PD2D5 (2013).
  8. H. Ito, T. Furuta, S. Kodama, T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000). [CrossRef]
  9. M. Urteaga, R. Pierson, P. Rowell, V. Jain, E. Lobisser, and M. J. W. Rodwell, “130nm InP DHBTs with fτ >0.52THz and fmax >1.1THz,” Device Research Conference (DRC), 2011 69th Annual, 281–282 (2011).
  10. B. Heinemann, R. Barth, D. Bolze, J. Drews, G. G. Fischer, A. Fox, O. Fursenko, T. Grabolla, U. Haak, D. Knoll, R. Kurps, M. Lisker, S. Marschmeyer, H. Rücker, D. Schmidt, J. Schmidt, M. A. Schubert, B. Tillack, C. Wipf, D. Wolansky, and Y. Yamamoto, “SiGe HBT technology with fτ/fmax of 300GHz/500GHz and 2.0 ps CML gate delay,” Electron Devices Meeting (IEDM), 2010 IEEE international, 30.5.1–30.5.4 (2010).
  11. H. Li, B. Jagannathan, J. Wang, T.-C. Su, S. Sweeney, J. J. Pekarik, and Y. Shi, “Technology Scaling and Device Design for 350 GHz RF Performance in a 45nm Bulk CMOS Process,” VLSI Technology, 2007 IEEE Symposium on, 56–57 (2007). [CrossRef]
  12. J. B. Hacker, M. Urteaga, M. Seo, A. Skalare, R. H. Lin, “InP HBT Amplifier MMICs Operating to 0.67 THz,” 2013 IEEE International Microwave Symposium, (2013).
  13. H. Park, M. Piels, E. Bloch, M. Lu, A. Sivananthan, Z. Griffith, L. Johansson, J. Bowers, L. Coldren, and M. Rodwell, “Integrated Circuits for Wavelength Division De-multiplexing in the Electrical Domain,” in Proceedings of ECOC’2013, Mo4C3 (2013).
  14. E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. W. Rodwell, “A 1-20 GHz All-Digital InP HBT Optical Wavelength Synthesis IC,” IEEE Trans. Microw. Theory Tech. 61(1), 570–580 (2013). [CrossRef]
  15. Z. He, W. Wu, J. Chen, Y. Li, D. Stackenas, H. Zirath, “An FPGA-based 5 Gbit/s D-QPSK modem for E-band point-to-point radios,” 2011 European Microwave Conference, 690–692 (2011)
  16. M. Urteaga, R. Pierson, P. Rowell, M. Choe, D. Mensa, and B. Brar, “Advanced InP DHBT process for high speed LSI circuits,” IPRM 2008. 20th International conference, 1–5 (2008). [CrossRef]
  17. E. Bloch, H.-C. Park, Z. Griffith, M. Urteaga, D. Ritter, M. J. W. Rodwell, “A 107 GHz 55 dBΩ InP broadband transimpedance amplifier IC for high-speed optical communication links,” in Proceedings of IEEE CSICS, 2013 (2013), pp. 1–4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited