OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 1058–1064

Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser

Sergey V. Smirnov, Sergey M. Kobtsev, and Sergey V. Kukarin  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 1058-1064 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1671 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the first time we report the results of both numerical simulation and experimental observation of second-harmonic generation as an example of non-linear frequency conversion of pulses generated by passively mode-locked fiber master oscillator in different regimes including conventional (stable) and double-scale (partially coherent and noise-like) ones. We show that non-linear frequency conversion efficiency of double-scale pulses is slightly higher than that of conventional picosecond laser pulses with the same energy and duration despite strong phase fluctuations of double-scale pulses.

© 2014 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 14, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: January 3, 2014
Published: January 10, 2014

Sergey V. Smirnov, Sergey M. Kobtsev, and Sergey V. Kukarin, "Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser," Opt. Express 22, 1058-1064 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. J. Matsas, T. P. Newson, D. J. Richardson, D. N. Payne, “Self-starting, passively mode-locked fibre ring soliton laser exploiting non-linear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992). [CrossRef]
  2. F. Ilday, J. Buckley, L. Kuznetsova, F. Wise, “Generation of 36-femtosecond pulses from a ytterbium fiber laser,” Opt. Express 11(26), 3550–3554 (2003). [CrossRef] [PubMed]
  3. F. W. Wise, A. Chong, W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008). [CrossRef]
  4. S. Kobtsev, S. Kukarin, Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16(26), 21936–21941 (2008). [CrossRef] [PubMed]
  5. P. Grelu, N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012). [CrossRef]
  6. L. M. Zhao, D. Y. Tang, T. H. Cheng, C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272(2), 431–434 (2007). [CrossRef]
  7. B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, F. Ö. Ilday, “Generation of parabolic bound pulses from a Yb-fiber laser,” Opt. Express 14(13), 6075–6083 (2006). [CrossRef] [PubMed]
  8. J. M. Soto-Crespo, P. Grelu, N. Akhmediev, N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75(1), 016613 (2007). [CrossRef] [PubMed]
  9. W. H. Renninger, A. Chong, F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012). [CrossRef] [PubMed]
  10. P. Grelu, J. M. Soto-Crespo, “Temporal soliton “molecules” in mode-locked lasers: collisions, pulsations, and vibrations,” Lect. Notes Phys. 751, 137–173 (2008).
  11. S. Chouli, P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009). [CrossRef] [PubMed]
  12. A. Komarov, H. Leblond, F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005). [CrossRef]
  13. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17(23), 20707–20713 (2009). [CrossRef] [PubMed]
  14. S. Smirnov, S. Kobtsev, S. Kukarin, A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express 20(24), 27447–27453 (2012). [CrossRef] [PubMed]
  15. M. Horowitz, Y. Barad, Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997). [CrossRef] [PubMed]
  16. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15(5), 2145–2150 (2007). [CrossRef] [PubMed]
  17. D. Lei, H. Yang, H. Dong, S. Wen, H. Xu, J. Zhang, “Effect of birefringence on the bandwidth of noise-like pulse in an erbium-doped fiber laser,” J. Mod. Opt. 56(4), 572–576 (2009). [CrossRef]
  18. Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013). [CrossRef]
  19. L. M. Zhao, D. Y. Tang, “Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser,” Appl. Phys. B 83(4), 553–557 (2006). [CrossRef]
  20. D. Y. Tang, L. M. Zhao, B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005). [CrossRef] [PubMed]
  21. S. M. Kobtsev, S. V. Smirnov, “Fiber lasers mode-locked due to nonlinear polarization evolution: golden mean of cavity length,” Laser Phys. 21(2), 272–276 (2011). [CrossRef]
  22. I. A. Yarutkina, O. V. Shtyrina, M. P. Fedoruk, S. K. Turitsyn, “Numerical modeling of fiber lasers with long and ultra-long ring cavity,” Opt. Express 21(10), 12942–12950 (2013). [CrossRef] [PubMed]
  23. Y. Takushima, K. Yasunaka, Y. Ozeki, K. Kikuchi, “87 nm bandwidth noise-like pulse generation from erbium-doped fibre laser,” Electron. Lett. 41(7), 399–400 (2005). [CrossRef]
  24. J. C. Hernandez-Garcia, O. Pottiez, J. M. Estudillo-Ayala, “Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-eight fiber laser,” Laser Phys. 22(1), 221–226 (2012). [CrossRef]
  25. L. Wang, X. Liu, Y. Gong, D. Mao, L. Duan, “Observations of four types of pulses in a fiber laser with large net-normal dispersion,” Opt. Express 19(8), 7616–7624 (2011). [CrossRef] [PubMed]
  26. S. M. Kobtsev, S. V. Kukarin, S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20(2), 375–378 (2010). [CrossRef]
  27. M. L. Dennis, M. A. Putnam, J. U. Kang, T.-E. Tsai, I. N. Duling, E. J. Friebele, “Grating sensor array demodulation by use of a passively mode-locked fiber laser,” Opt. Lett. 22(17), 1362–1364 (1997). [CrossRef] [PubMed]
  28. S. M. Kobtsev, S. V. Smirnov, “Influence of noise amplification on generation of regular short pulse trains in optical fibre pumped by intensity-modulated CW radiation,” Opt. Express 16(10), 7428–7434 (2008). [CrossRef] [PubMed]
  29. V. G. Dmitriev, L. V. Tarasov, Applied Nonlinear Optics [in Russian] (M., Radio i svyaz’, 1982).
  30. S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, L. Abrardi, M. L. Hernanz, M. Gonzalez-Herraez, “Experimental investigation of the effect of pump incoherence on nonlinear pump spectral broadening and continuous-wave supercontinuum generation,” Opt. Lett. 31(23), 3477–3479 (2006). [CrossRef] [PubMed]
  31. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13(17), 6615–6625 (2005). [CrossRef] [PubMed]
  32. S. M. Kobtsev, S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13(18), 6912–6918 (2005). [CrossRef] [PubMed]
  33. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited