OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 166–176

Effect of oblique force source induced by laser ablation on ultrasonic generation

Yuning Guo, Dexing Yang, Ying Chang, and Wei Gao  »View Author Affiliations


Optics Express, Vol. 22, Issue 1, pp. 166-176 (2014)
http://dx.doi.org/10.1364/OE.22.000166


View Full Text Article

Enhanced HTML    Acrobat PDF (3112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of asymmetry caused by oblique line-shaped laser ablation on the generation of ultrasonic waves in metal, especially the effect of transverse component of the ablation force source on the ultrasonic waves is analyzed. Due to the oblique force source, the displacements of shear wave increase obviously by the enhanced shear force, the energy concentration area of longitudinal wave deflects to the small range centered on the incident direction while that of shear wave is approximately perpendicular to incident direction. In addition, surface wave enhances in the direction of transverse power flow. Furthermore, some ultrasonic characteristics under vortex laser ablation condition are inferred.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3390) Lasers and laser optics : Laser materials processing
(350.5340) Other areas of optics : Photothermal effects
(280.3375) Remote sensing and sensors : Laser induced ultrasonics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 20, 2013
Revised Manuscript: December 4, 2013
Manuscript Accepted: December 13, 2013
Published: January 2, 2014

Citation
Yuning Guo, Dexing Yang, Ying Chang, and Wei Gao, "Effect of oblique force source induced by laser ablation on ultrasonic generation," Opt. Express 22, 166-176 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-1-166


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Guan, Z. H. Shen, X. W. Ni, J. Lu, J. J. Wang, B. Q. Xu, “Numerical simulation of the ultrasonic waves generated by ring-shaped laser illumination patterns,” Opt. Laser Technol. 39(6), 1281–1287 (2007). [CrossRef]
  2. W. Feng, D. X. Yang, Y. N. Guo, Y. Chang, “Finite element modeling of bulk ultrasonic waves generated by ring-shaped laser illumination in a diamond anvil cell,” Opt. Express 20(6), 6429–6438 (2012). [CrossRef] [PubMed]
  3. R. Coulette, E. Lafond, M.-H. Nadal, C. Gondard, F. Lepoutre, O. Petillon, “Laser-generated ultrasound applied to two-layered materials characterization: semi-analytical model and experimental validation,” Ultrasonics 36(1–5), 239–243 (1998). [CrossRef]
  4. M. C. Gower, “Industrial applications of laser micromachining,” Opt. Express 7(2), 56–67 (2000). [CrossRef] [PubMed]
  5. P. R. Willmott, J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000). [CrossRef]
  6. X. Zeng, X. L. Mao, R. Greif, R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005). [CrossRef]
  7. N. Zhang, X. Zhu, J. Yang, X. Wang, M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007). [CrossRef] [PubMed]
  8. R. J. Conant and S. E. Garwick, “Mathematical modeling of laser ablation in liquids with application to laser ultrasonics,” Review of Progress in Quantitative: Non-destructive Evaluation, D. O. Thompson, and D. E. Chimenti eds., vol. 16, Plenum, New York, 1997, pp. 491–498.
  9. R. J. Conant, K. L. Telschow, J. B. Walter, “Mathematical modeling of laser ablation in liquids with application to laser ultrasonics,” Ultrasonics 40(10), 1065–1077 (2002). [CrossRef]
  10. R. R. Fang, D. M. Zhang, Z. H. Li, F. X. Yang, L. Li, X. Y. Tan, M. Sun, “Improved thermal model and its application in UV high-power pulsed laser ablation of metal target,” Solid State Commun. 145(11–12), 556–560 (2008). [CrossRef]
  11. T. W. Murray, J. W. Wagner, “Laser generation of acoustic waves in the ablative regime,” J. Appl. Phys. 85(4), 2031–2040 (1999). [CrossRef]
  12. B. Mi, I. C. Ume, “Parametric studies of laser generated ultrasonic signals in ablative regime: time and frequency domains,” J. Nondestruct. Eval. 21(1), 23–33 (2002). [CrossRef]
  13. S. J. Reese, Z. N. Utegulov, F. Farzbod, R. S. Schley, D. H. Hurley, “Examination of the epicentral waveform for laser ultrasound in the melting regime,” Ultrasonics 53(3), 799–802 (2013). [CrossRef] [PubMed]
  14. Z. H. Shen, B. Q. Xu, X. W. Ni, J. Lu, S. Y. Zhang, “Theoretical study on line source laser-induced surface acoustic waves in two-layer structure in ablative regime,” Opt. Laser Technol. 36(2), 139–143 (2004). [CrossRef]
  15. A. V. Bulgakov, N. M. Bulgakova, “Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet,” J. Phys. D Appl. Phys. 31(6), 693–703 (1998). [CrossRef]
  16. I. Zinovik, A. Povitsky, “Dynamics of multiple plumes in laser ablation: modeling of the shielding effect,” J. Appl. Phys. 100(2), 024911 (2006). [CrossRef]
  17. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012). [CrossRef] [PubMed]
  18. C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Quantitative studies of thermally generated elastic waves in laser-irradiated metals,” J. Appl. Phys. 51(12), 6210–6216 (1980). [CrossRef]
  19. D. H. Hurley, “Laser-generated thermoelastic acoustic sources in anisotropic materials,” J. Acoust. Soc. Am. 115(5), 2054–2058 (2004). [CrossRef]
  20. J. R. Bernstein, J. B. Spicer, “Line source representation for laser-generated ultrasound in aluminum,” J. Acoust. Soc. Am. 107(3), 1352–1357 (2000). [CrossRef] [PubMed]
  21. S. J. Davies, C. Edwards, G. S. Taylor, S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D Appl. Phys. 26(3), 329–348 (1993). [CrossRef]
  22. S. Raetz, T. Dehoux, B. Audoin, “Effect of laser beam incidence angle on the thermoelastic generation in semi-transparent materials,” J. Acoust. Soc. Am. 130(6), 3691–3697 (2011). [CrossRef] [PubMed]
  23. C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988). [CrossRef]
  24. C. W. Sun, Effects of Laser Irradiation (National Defense Industry Press, Beijing, 2002), Chap. 3. (in Chinese)
  25. Y. Qin, J. J. Zhao, P. B. Zhang, B. Wen, “Two-dimensional numerical simulation of laser-ablation of aluminum material by nanosecond laser pulse,” Acta Phys. Sin. 59(10), 7120–7128 (2010) (in Chinese).
  26. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  27. C. Hnatovsky, V. G. Shvedov, N. Shostka, A. V. Rode, W. Krolikowski, “Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses,” Opt. Lett. 37(2), 226–228 (2012). [CrossRef] [PubMed]
  28. V. Caullet, N. Marsal, D. Wolfersberger, M. Sciamanna, “Vortex induced rotation dynamics of optical patterns,” Phys. Rev. Lett. 108(26), 263903 (2012). [CrossRef] [PubMed]
  29. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited