OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 210–228

A divide and conquer strategy for the maximum likelihood localization of low intensity objects

Alexander Krull, André Steinborn, Vaishnavi Ananthanarayanan, Damien Ramunno-Johnson, Uwe Petersohn, and Iva M. Tolić-Nørrelykke  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 210-228 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1524 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In cell biology and other fields the automatic accurate localization of sub-resolution objects in images is an important tool. The signal is often corrupted by multiple forms of noise, including excess noise resulting from the amplification by an electron multiplying charge-coupled device (EMCCD). Here we present our novel Nested Maximum Likelihood Algorithm (NMLA), which solves the problem of localizing multiple overlapping emitters in a setting affected by excess noise, by repeatedly solving the task of independent localization for single emitters in an excess noise-free system. NMLA dramatically improves scalability and robustness, when compared to a general purpose optimization technique. Our method was successfully applied for in vivo localization of fluorescent proteins.

© 2014 Optical Society of America

OCIS Codes
(040.3780) Detectors : Low light level
(100.2960) Image processing : Image analysis
(110.0180) Imaging systems : Microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(150.1135) Machine vision : Algorithms

ToC Category:
Image Processing

Original Manuscript: September 9, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: November 16, 2013
Published: January 2, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Alexander Krull, André Steinborn, Vaishnavi Ananthanarayanan, Damien Ramunno-Johnson, Uwe Petersohn, and Iva M. Tolić-Nørrelykke, "A divide and conquer strategy for the maximum likelihood localization of low intensity objects," Opt. Express 22, 210-228 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Coelho, N. Maghelli, I. M. Tolić-Nørrelykke, “Single-molecule imaging in vivo: the dancing building blocks of the cell,” Integr. Biol. (Camb) 5, 748–758 (2013). [CrossRef]
  2. K. Irie, A. E. McKinnon, K. Unsworth, I. M. Woodhead, “A model for measurement of noise in CCD digital-video cameras,” Meas. Sci. Technol. 19, 045207 (2008). [CrossRef]
  3. D. J. Denvir, E. Conroy, “Electron-multiplying CCD: the new ICCD, in Low-Light-Level and Real-Time Imaging Systems, Components, and Applications”, Proc. SPIE 4796, pp. 164–174 (2003). [CrossRef]
  4. B. C. Carter, G. T. Shubeita, S. P. Gross, “Tracking single particles: a user-friendly quantitative evaluation,” Phys. Biol. 2, 60–72 (2005). [CrossRef] [PubMed]
  5. G. M. Lee, A. Ishihara, K. A. Jacobson, “Direct observation of brownian motion of lipids in a membrane,” Proc. Natl. Acad. Sci. USA 88, 6274–6278 (1991). [CrossRef] [PubMed]
  6. R. N. Ghosh, W. W. Webb, “Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules.” Biophys. J. 66, 1301–1318 (1994). [CrossRef] [PubMed]
  7. C. M. Anderson, G. N. Georgiou, I. E. Morrison, G. V. Stevenson, R. J. Cherry, “Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. low-density lipoprotein and influenza virus receptor mobility at 4 degrees c,” J. Cell Sci. 101 (Pt 2), 415–425 (1992). [PubMed]
  8. G. J. Schutz, H. Schindler, T. Schmidt, “Single-molecule microscopy on model membranes reveals anomalous diffusion.” Biophys. J. 73, 1073–1080 (1997). [CrossRef] [PubMed]
  9. R. J. Ober, S. Ram, E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86, 1185–1200 (2004). [CrossRef] [PubMed]
  10. C. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty.” Nat. Methods 7, 373–375 (2010). [CrossRef] [PubMed]
  11. F. Huang, S. L. Schwartz, J. M. Byars, K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express 2, 1377–1393 (2011). [CrossRef] [PubMed]
  12. Y. Wang, T. Quan, S. Zeng, Z.-L. Huang, “PALMER: a method capable of parallel localization of multiple emitters for high-density localization microscopy,” Opt. Express 20, 16039–16049 (2012). [CrossRef] [PubMed]
  13. K. I. Mortensen, L. S. Churchman, J. A. Spudich, H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7, 377–381 (2010). [CrossRef] [PubMed]
  14. J. Chao, E. S. Ward, R. J. Ober, “Fisher information matrix for branching processes with application to electron-multiplying charge-coupled devices,” Multidimens. Syst. Signal Process. 23, 349–379 (2012). [CrossRef] [PubMed]
  15. C. H. A. G. Basden, “Photon counting strategies with low light level CCDs,” Monthly Notices of the Royal Astron. Soc. 345, 985–991 (2003). [CrossRef]
  16. J. Chao, E. S. Ward, R. J. Ober, “Localization accuracy in single molecule microscopy using electron-multiplying charge-coupled device cameras, in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIX,” Proc. SPIE 8227,p. 82271P (2012). [CrossRef]
  17. A. P. Dempster, N. M. Laird, D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. Royal Stat. Soc., B 39, 1–38 (1977).
  18. C. Rao, Linear Statistical Inference and its Applications (Wiley, 1975).
  19. M. J. D. Powell, “An efficient method for finding the minimum of a function of several variables without calculating derivatives,” Comput. J. 7, 155–162 (1964). [CrossRef]
  20. J. Chao, S. Ram, E. S. Ward, R. J. Ober, “Ultrahigh accuracy imaging modality for super-localization microscopy,” Nat. Methods 10, 335–338 (2013). [CrossRef] [PubMed]
  21. A. Steinborn, S. Taut, V. Brendler, G. Geipel, B. Flach, “TRLFS: analysing spectra with an expectation-maximization (EM) algorithm.” Spectrochim Acta A Mol Biomol Spectrosc. 71, 1425–1432 (2008). [CrossRef] [PubMed]
  22. M. I. Schlesinger, V. Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition, (Kluwer Academic Publishers, 2002) vol. 24 of Computational Imaging and Vision. [CrossRef]
  23. S. Stallinga, B. Rieger, “The effect of background on localization uncertainty in single emitter imaging,” Proceedings of 9th IEEE International Symposium on Biomedical Imaging 2012, 988–991(2012).
  24. L. Xu, M. I. Jordan, “On convergence properties of the EM algorithm for gaussian mixtures,” Neural Comput. 8, 129–151 (1995). [CrossRef]
  25. R. Starr, S. Stahlheber, A. Small, “Fast maximum likelihood algorithm for localization of fluorescent molecules,” Opt. Lett. 37, 413–415 (2012). [CrossRef] [PubMed]
  26. M. Hirsch, R. J. Wareham, M. L. Martin-Fernandez, M. P. Hobson, D. J. Rolfe, “A stochastic model for electron multiplication charge-coupled devices – from theory to practice,” PLoS ONE 8, e53671 (2013). [CrossRef]
  27. I. Kalinina, A. Nandi, P. Delivani, M. R. Chacón, A. H. Klemm, D. Ramunno-Johnson, A. Krull, B. Lindner, N. Pavin, I. M. Tolić-Nørrelykke, “Pivoting of microtubules around the spindle pole accelerates kinetochore capture,” Nat. Cell Biol. 15, 82–87 (2013). [CrossRef]
  28. V. Ananthanarayanan, M. Schattat, S. K. Vogel, A. Krull, N. Pavin, I. M. Tolić-Nørrelykke, “Dynein motion switches from diffusive to directed upon cortical anchoring,” Cell 153, 1526–1536 (2013). [CrossRef] [PubMed]
  29. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012). [CrossRef] [PubMed]
  30. S. K. Vogel, N. Pavin, N. Maghelli, F. Jülicher, I. M. Tolić-Nørrelykke, “Self-organization of dynein motors generates meiotic nuclear oscillations,” PLoS Biol. 7, 0918–0928 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited