OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 262–273

Liquid crystal assisted optical fibres

M. Wahle and H.-S. Kitzerow  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 262-273 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2162 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microstructured fibres which consist of a circular step index core and a liquid crystal inclusion running parallel to this core are investigated. The attenuation and electro-optic effects of light coupled into the core are measured. Coupled mode theory is used to study the interaction of core modes with the liquid crystal inclusion. The experimental and theoretical results show that these fibres can exhibit attenuation below 0.16 dB cm−1 in off-resonant wavelength regions and still have significant electro-optic effects which can lead to a polarisation extinction of 6 dB cm−1.

© 2014 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.4080) Fiber optics and optical communications : Modulation
(160.3710) Materials : Liquid crystals
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 27, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: November 15, 2013
Published: January 2, 2014

M. Wahle and H.-S. Kitzerow, "Liquid crystal assisted optical fibres," Opt. Express 22, 262-273 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  2. Z. Zhu, T. G. Brown, “Analysis of the space filling modes of photonic crystal fibers,” Opt. Express 8(10), 547–554 (2001). [CrossRef] [PubMed]
  3. J. Pottage, D. Bird, T. Hedley, J. Knight, T. Birks, P. Russell, P. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11(22), 2854–2861 (2003). [CrossRef] [PubMed]
  4. T. A. Birks, G. J. Pearce, D. M. Bird, “Approximate band structure calculation for photonic band gap fibres,” Opt. Express 14(20), 9483–9490 (2006). [CrossRef] [PubMed]
  5. D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012). [CrossRef] [PubMed]
  6. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993).
  7. A. Lorenz, R. Schuhmann, H. S. Kitzerow, “Infiltrated photonic crystal fiber: experiments and liquid crystal scattering model,” Opt. Express 18(4), 3519–3530 (2010). [CrossRef] [PubMed]
  8. S. Ertman, T. R. Woliński, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, R. Dabrowski, “Low-loss propagation and continuously tunable birefringence in high-index photonic crystal fibers filled with nematic liquid crystals,” Opt. Express 17(21), 19298–19310 (2009). [CrossRef] [PubMed]
  9. H.-S. Kitzerow, “Photonic micro-and nanostructures, metamaterials,” in Handbook of Liquid Crystals, J. W. Goodby, P. J. Collings, T. Kato, C. Tschierske, H. Gleeson, and P. Raynes, eds. (Wiley-VCH, 2014), Chap. 7.
  10. H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, P. S. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011). [CrossRef] [PubMed]
  11. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965). [CrossRef]
  12. O. Butov, K. Golant, A. Tomashuk, M. van Stralen, A. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002). [CrossRef]
  13. A. Hardy, W. Streifer, “Coupled modes of multiwaveguide systems and phased arrays,” J. Lightwave Technol. 4(1), 90–99 (1986). [CrossRef]
  14. A. Hardy, W. Streifer, “Coupled mode solutions of multiwaveguide systems,” IEEE J. Quantum Electron. 22(4), 528–534 (1986). [CrossRef]
  15. S.-L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5(1), 5–15 (1987). [CrossRef]
  16. S.-L. Chuang, “A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation,” J. Lightwave Technol. 5(1), 174–183 (1987). [CrossRef]
  17. C. Hu, J. R. Whinnery, “Losses of a nematic liquid-crystal optical waveguide,” J. Opt. Soc. Am. 64(11), 1424–1432 (1974). [CrossRef]
  18. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  19. A. Lorenz, R. Schuhmann, H. S. Kitzerow, “Switchable waveguiding in two liquid-crystal-filled photonic crystal fibers,” Appl. Opt. 49(20), 3846–3853 (2010). [CrossRef] [PubMed]
  20. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005). [CrossRef] [PubMed]
  21. E. Jakeman, E. Raynes, “Electro-optic response times in liquid crystals,” Phys. Lett. A 39(1), 69–70 (1972). [CrossRef]
  22. S.-M. Kuo, Y.-W. Huang, S.-M. Yeh, W.-H. Cheng, C.-H. Lin, “Liquid crystal modified photonic crystal fiber (LC-PCF) fabricated with an un-cured SU-8 photoresist sealing technique for electrical flux measurement,” Opt. Express 19(19), 18372–18379 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited