OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 274–282

Subwavelength micropillar array terahertz lasers

Michael Krall, Martin Brandstetter, Christoph Deutsch, Hermann Detz, Aaron Maxwell Andrews, Werner Schrenk, Gottfried Strasser, and Karl Unterrainer  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 274-282 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1574 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on micropillar-based terahertz lasers with active pillars that are much smaller than the emission wavelength. These micropillar array lasers correspond to scaled-down band-edge photonic crystal lasers forming an active photonic metamaterial. In contrast to photonic crystal lasers which use significantly larger pillar structures, lasing emission is not observed close to high-symmetry points in the photonic band diagram, but in the effective medium regime. We measure stimulated emission at 4 THz for micropillar array lasers with pillar diameters of 5 µm. Our results not only demonstrate the integration of active subwavelength optics in a terahertz laser, but are also an important step towards the realization of nanowire-based terahertz lasers.

© 2014 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3090) Physical optics : Infrared, far
(230.5298) Optical devices : Photonic crystals
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 26, 2013
Revised Manuscript: November 1, 2013
Manuscript Accepted: November 24, 2013
Published: January 2, 2014

Michael Krall, Martin Brandstetter, Christoph Deutsch, Hermann Detz, Aaron Maxwell Andrews, Werner Schrenk, Gottfried Strasser, and Karl Unterrainer, "Subwavelength micropillar array terahertz lasers," Opt. Express 22, 274-282 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  2. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003). [CrossRef] [PubMed]
  3. M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, O. Painter, “Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap,” Opt. Express 15(10), 5948–5965 (2007). [CrossRef] [PubMed]
  4. L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdré, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, “Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors,” Opt. Express 13(22), 8960–8968 (2005). [CrossRef] [PubMed]
  5. A. Benz, G. Fasching, Ch. Deutsch, A. M. Andrews, K. Unterrainer, P. Klang, W. Schrenk, G. Strasser, “Terahertz photonic crystal resonators in double-metal waveguides,” Opt. Express 15(19), 12418–12424 (2007). [CrossRef] [PubMed]
  6. M. Notomi, H. Suzuki, T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78(10), 1325–1327 (2001). [CrossRef]
  7. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999). [CrossRef]
  8. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999). [CrossRef]
  9. H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008). [CrossRef] [PubMed]
  10. H. Zhang, L. A. Dunbar, G. Scalari, R. Houdré, J. Faist, “Terahertz photonic crystal quantum cascade lasers,” Opt. Express 15(25), 16818–16827 (2007). [CrossRef] [PubMed]
  11. A. Benz, Ch. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express 17(2), 941–946 (2009). [CrossRef] [PubMed]
  12. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457(7226), 174–178 (2009). [CrossRef] [PubMed]
  13. H. Zhang, G. Scalari, M. Beck, J. Faist, R. Houdré, “Complex-coupled photonic crystal THz lasers with independent loss and refractive index modulation,” Opt. Express 19(11), 10707–10713 (2011). [CrossRef] [PubMed]
  14. S. Nojima, “Optical-gain enhancement in two-dimensional active photonic crystals,” J. Appl. Phys. 90(2), 545–551 (2001). [CrossRef]
  15. H. Yasuda, I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47(3), 1632–1634 (2008). [CrossRef]
  16. E. Perret, N. Zerounian, S. David, F. Aniel, “Complex permittivity characterization of benzocyclobutene for terahertz applications,” Microelectron. Eng. 85(11), 2276–2281 (2008). [CrossRef]
  17. S. Datta, C. T. Chan, K. M. Ho, C. M. Soukoulis, “Effective dielectric constant of periodic composite structures,” Phys. Rev. B Condens. Matter 48(20), 14936–14943 (1993). [CrossRef] [PubMed]
  18. P. Lalanne, “Effective medium theory applied to photonic crystals composed of cubic or square cylinders,” Appl. Opt. 35(27), 5369–5380 (1996). [CrossRef] [PubMed]
  19. P. Halevi, A. A. Krokhin, J. Arriaga, “Photonic crystal optics and homogenization of 2D periodic composites,” Phys. Rev. Lett. 82(4), 719–722 (1999). [CrossRef]
  20. D. J. Bergman, D. Stroud, “Physical properties of macroscopically inhomogeneous media,” Solid State Phys. 46, 147–269 (1992). [CrossRef]
  21. S. Johnson, J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef] [PubMed]
  22. B. Vasić, G. Isić, R. Gajić, K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18(19), 20321–20333 (2010). [CrossRef] [PubMed]
  23. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002). [CrossRef]
  24. H. Zhang, G. Scalari, J. Faist, L. A. Dunbar, R. Houdré, “Design and fabrication technology for high performance electrical pumped terahertz photonic crystal band edge lasers with complete photonic band gap,” J. Appl. Phys. 108(9), 093104 (2010). [CrossRef]
  25. M. K. Rathi, G. Tsvid, A. A. Khandekar, J. C. Shin, D. Botez, T. F. Kuech, “Passivation of interfacial states for GaAs- and InGaAs/InP-based regrown nanostructures,” J. Electron. Mater. 38(10), 2023–2032 (2009). [CrossRef]
  26. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002). [CrossRef] [PubMed]
  27. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012). [CrossRef] [PubMed]
  28. N. S. Wingreen, C. A. Stafford, “Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser,” IEEE J. Quantum Electron. 33(7), 1170–1173 (1997). [CrossRef]
  29. C.-F. Hsu, J. -S. O, P. Zory, D. Botez, “Intersubband quantum-box semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 491–503 (2000).
  30. E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winnerl, M. Helm, H. Y. Liu, M. S. Skolnick, L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8(10), 803–807 (2009). [CrossRef] [PubMed]
  31. S. Maëro, L.-A. de Vaulchier, Y. Guldner, C. Deutsch, M. Krall, T. Zederbauer, G. Strasser, K. Unterrainer, “Magnetic-field assisted performance of InGaAs/GaAsSb terahertz quantum cascade lasers,” Appl. Phys. Lett. 103(5), 051116 (2013). [CrossRef]
  32. T. Grange, “Nanowire terahertz quantum cascade lasers,” arXiv:1301.1258 [cond–mat.mes–hall] (2013).
  33. M. I. Amanti, A. Bismuto, M. Beck, L. Isa, K. Kumar, E. Reimhult, J. Faist, “Electrically driven nanopillars for THz quantum cascade lasers,” Opt. Express 21(9), 10917–10923 (2013). [CrossRef] [PubMed]
  34. S. Kumar, Q. Hu, J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94(13), 131105 (2009). [CrossRef]
  35. C. Deutsch, H. Detz, M. Krall, M. Brandstetter, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “Dopant migration effects in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(20), 201102 (2013). [CrossRef]
  36. M. Krall, M. Brandstetter, C. Deutsch, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “Towards nanowire-based terahertz quantum cascade lasers: prospects and technological challenges,” Proc. SPIE 8640, 864018 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited