OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 359–368

Energy-time entanglement generation in optical fibers under CW pumping

Shuai Dong, Qiang Zhou, Wei Zhang, Yuhao He, Weijun Zhang, Lixing You, Yidong Huang, and Jiangde Peng  »View Author Affiliations


Optics Express, Vol. 22, Issue 1, pp. 359-368 (2014)
http://dx.doi.org/10.1364/OE.22.000359


View Full Text Article

Enhanced HTML    Acrobat PDF (929 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, the energy-time entangled photon-pairs at 1.5 μm are generated by the spontaneous four wave mixing (SFWM) in optical fibers under continuous wave (CW) pumping. The energy-time entanglement property is demonstrated experimentally through an experiment of Franson-type interference. Although the generation rates of the noise photons are one order of magnitude higher than that of the photon-pairs under CW pumping, the impact of noise photons can be highly suppressed in the measurement by a narrow time domain filter supported by superconducting nanowire single photon detectors with low timing jitters and time correlated single photon counting (TCSPC) module with high time resolution. The experiment results show that the SFWM in optical fibers under CW pumping provides a simple and practical way to generate energy-time entanglement at 1.5 μm, which has great potential for long-distance quantum information applications over optical fibers.

© 2014 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: October 28, 2013
Revised Manuscript: December 12, 2013
Manuscript Accepted: December 17, 2013
Published: January 2, 2014

Citation
Shuai Dong, Qiang Zhou, Wei Zhang, Yuhao He, Weijun Zhang, Lixing You, Yidong Huang, and Jiangde Peng, "Energy-time entanglement generation in optical fibers under CW pumping," Opt. Express 22, 359-368 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-1-359


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Tittel, J. Brendel, H. Zbinden, N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000). [CrossRef] [PubMed]
  2. I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature (London) 421, 509–513 (2003). [CrossRef]
  3. I. Ali-Khan, C. J. Broadbent, J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007). [CrossRef] [PubMed]
  4. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. Fejer, Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008). [CrossRef] [PubMed]
  5. V. Giovannetti, S. Lloyd, L. Maccone, “Positioning and clock synchronization through entanglement,” Phys. Rev. A 65, 022309 (2002). [CrossRef]
  6. W. Tittel, J. Brendel, N. Gisin, H. Zbinden, “Long-distance bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150 (1999). [CrossRef]
  7. L. Wang, C. Hong, S. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001). [CrossRef]
  8. M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 27, 491C493 (2002)
  9. E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79, 023840 (2009). [CrossRef]
  10. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express 17, 4670–4676 (2009) [CrossRef] [PubMed]
  11. J. E. Sharping, M. Fiorentino, P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001). [CrossRef]
  12. K. Inoue, K. Shimizu, “Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous raman scattering,” Jpn. J. Appl. Phys. 43, 8048 (2004). [CrossRef]
  13. X. Li, J. Chen, P. Voss, J. Sharping, P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004). [CrossRef] [PubMed]
  14. H. Takesue, K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005). [CrossRef] [PubMed]
  15. Q. Zhou, W. Zhang, J. Cheng, Y. Huang, J. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Lett. 34, 2706–2708 (2009). [CrossRef] [PubMed]
  16. Q. Zhou, W. Zhang, J. Cheng, Y. Huang, J. Peng, “Noise performance comparison of 1.5 μm correlated photon pair generation in different fibers,” Opt. Express 18, 17114–17123 (2010). [CrossRef] [PubMed]
  17. B. Fang, O. Cohen, J. B. Moreno, V. O. Lorenz, “State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing,” Opt. Express 21, 2707–2717 (2013). [CrossRef] [PubMed]
  18. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, Y. Yamamoto, ”Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007) [CrossRef] [PubMed]
  19. J. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989). [CrossRef] [PubMed]
  20. J. S. Bell, “On the einstein-podolsky-rosen paradox,” Physics 1, 195–200 (1964).
  21. J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969). [CrossRef]
  22. L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013). [CrossRef]
  23. S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013). [CrossRef] [PubMed]
  24. J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012). [CrossRef]
  25. H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, N. Gisin, “Tailoring photonic entanglement in high-dimensional hilbert spaces,” Phys. Rev. A 69, 050304 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited