OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 377–386

Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces

Wenlin Liao, Yifan Dai, Xuhui Xie, and Lin Zhou  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 377-386 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2576 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ion sputtering of Zerodur material often results in the formation of nanoscale microstructures on the surfaces, which seriously influences optical surface quality. In this paper, we describe the microscopic morphology evolution during ion sputtering of Zerodur surfaces through experimental researches and theoretical analysis, which shows that preferential sputtering together with curvature-dependent sputtering overcomes ion-induced smoothing mechanisms leading to granular nanopatterns formation in morphology and the coarsening of the surface. Consequently, we propose a new method for ion beam smoothing (IBS) of Zerodur optics assisted by deterministic ion beam material adding (IBA) technology. With this method, Zerodur optics with surface roughness down to 0.15nm root mean square (RMS) level is obtained through the experimental investigation, which demonstrates the feasibility of our proposed method.

© 2014 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4610) Optical design and fabrication : Optical fabrication
(220.5450) Optical design and fabrication : Polishing

ToC Category:
Optical Design and Fabrication

Original Manuscript: October 28, 2013
Revised Manuscript: December 10, 2013
Manuscript Accepted: December 12, 2013
Published: January 2, 2014

Wenlin Liao, Yifan Dai, Xuhui Xie, and Lin Zhou, "Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces," Opt. Express 22, 377-386 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267(8–9), 1390–1393 (2009). [CrossRef]
  2. T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616(2–3), 147–156 (2010). [CrossRef]
  3. H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013). [CrossRef]
  4. T. W. Drueding, T. G. Bifano, S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995). [CrossRef]
  5. Y. Dai, W. Liao, L. Zhou, S. Chen, X. Xie, “Ion beam figuring of high-slope surfaces based on figure error compensation algorithm,” Appl. Opt. 49(34), 6630–6636 (2010). [CrossRef] [PubMed]
  6. R. Soufli, S. L. Baker, D. L. Windt, E. M. Gullikson, J. C. Robinson, W. A. Podgorski, L. Golub, “Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA’s Solar Dynamics Observatory,” Appl. Opt. 46(16), 3156–3163 (2007). [CrossRef] [PubMed]
  7. P. B. Mirkarimi, S. L. Baker, C. Montcalm, J. A. Folta, “Recovery of multilayer-coated Zerodur and ULE optics for extreme-ultraviolet lithography by recoating, reactive-ion etching, and wet-chemical processes,” Appl. Opt. 40(1), 62–70 (2001). [CrossRef] [PubMed]
  8. H. E. Bennett, J. J. Shaffer, D. K. Burge, “Simple technique for obtaining approximate thermal expansion coefficients of low expansion materials: applications to Zerodur,” Appl. Opt. 23(16), 2734–2737 (1984). [CrossRef] [PubMed]
  9. R. M. Bradley, J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988). [CrossRef]
  10. A. Keller, S. Facsko, W. Moller, “Evolution of ion-induced ripple patterns on SiO2 surfaces,” Nucl. Instrum. Methods Phys. Res. B 267(4), 656–659 (2009). [CrossRef]
  11. A. Keller, S. Facsko, W. Möller, “The morphology of amorphous SiO2 surfaces during low energy ion sputtering,” J. Phys. Condens. Matter 21(49), 495305 (2009). [CrossRef] [PubMed]
  12. S. Sarkar, B. V. Daele, W. Vandervorst, “Impact of repetitive and random surface morphologies on the ripple formation on ion bombarded SiGe-surfaces,” New J. Phys. 10(8), 083012 (2008). [CrossRef]
  13. V. B. Shenoy, W. L. Chan, E. Chason, “Compositionally modulated ripples induced by sputtering of alloy surfaces,” Phys. Rev. Lett. 98(25), 256101 (2007). [CrossRef] [PubMed]
  14. M. A. Makeev, R. Cuerno, A. Barabasi, “Morphology of ion-sputtered surfaces,” Nucl. Instrum. Methods Phys. Res. B 197(3–4), 185–227 (2002). [CrossRef]
  15. T. M. Mayer, E. Chason, A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76(3), 1633–1643 (1994). [CrossRef]
  16. C. C. Umbach, R. L. Headrick, K. C. Chang, “Spontaneous Nanoscale Corrugation of Ion-Eroded SiO2: The Role of Ion-Irradiation-Enhanced Viscous Flow,” Phys. Rev. Lett. 87(24), 246104 (2001). [CrossRef] [PubMed]
  17. W. Liao, Y. Dai, X. Xie, L. Zhou, “Morphology evolution of fused silica surface during ion beam figuring of high-slope optical components,” Appl. Opt. 52(16), 3719–3725 (2013). [CrossRef] [PubMed]
  18. C. S. Madi, H. Bola George, M. J. Aziz, “Linear stability and instability patterns in ion-sputtered silicon,” J. Phys. Condens. Matter 21(22), 224010 (2009). [CrossRef] [PubMed]
  19. F. Frost, R. Fechner, B. Ziberi, D. Flamm, A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459(1–2), 100–105 (2004). [CrossRef]
  20. W. Liao, Y. Dai, X. Xie, L. Zhou, “Deterministic ion beam material adding technology for high-precision optical surfaces,” Appl. Opt. 52(6), 1302–1309 (2013). [CrossRef] [PubMed]
  21. W. Liao, Y. Dai, X. Xie, L. Zhou, “Combined figuring technology for high-precision optical surfaces using deterministic ion beam material adding and removal method,” Opt. Eng. 52(1), 010503 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited