OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 411–426

Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination

Ehsan Hashemi, Jörgen Bengtsson, Johan Gustavsson, Martin Stattin, Gatien Cosendey, Nicolas Grandjean, and Åsa Haglund  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 411-426 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1473 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Lateral loss causes optical energy to leave the laser cavity in the transverse, lateral, direction, and is sometimes neglected to simplify the numerical simulations. However, in contrast to outcoupling and absorption losses, we show that the lateral loss can change drastically with only nanometer-sized changes of the cavity structure, from being virtually zero to becoming the major source of cavity loss, since the cavity becomes antiguiding. This can be explained as the opening of a channel of efficient resonant lateral leakage of optical power at a certain oblique propagation angle. A number of different realizations of current apertures and top mirror designs in GaN-based VCSEL cavities, which have been suggested for realization of microcavity lasers emitting in the blue wavelength range, are simulated. Many of these are shown to lead to unintentional antiguiding, which can more than double the threshold gain for lasing. Notably, for strong enough antiguiding the resonant lateral leakage decreases so that the threshold gain values might again be tolerable. This regime has been suggested for robust single-mode operation since earlier predictions, building on analogies with slab waveguides, hinted at a very strong suppression of higher order modes. However, our simulations indicate that for the VCSEL cavities the derived formulas grossly overestimate the modal discrimination.

© 2014 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(140.3948) Lasers and laser optics : Microcavity devices
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 20, 2013
Manuscript Accepted: December 15, 2013
Published: January 2, 2014

Ehsan Hashemi, Jörgen Bengtsson, Johan Gustavsson, Martin Stattin, Gatien Cosendey, Nicolas Grandjean, and Åsa Haglund, "Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination," Opt. Express 22, 411-426 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012). [CrossRef]
  2. C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, D. Feezell, “Demonstration of nonpolar GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Expr. 5, 092104 (2012). [CrossRef]
  3. T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012). [CrossRef]
  4. D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Expr. 4, 072103 (2011). [CrossRef]
  5. T-C. Lu, S-W. Chen, T-T. Wu, P-M. Tu, C-K. Chen, C-H. Chen, Z-Y. Li, H-C. Kuo, S-C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl Phys. Lett. 97(7), 071114 (2010). [CrossRef]
  6. E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, Å. Haglund, “Engineering the lateral optical guiding in gallium nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jap. J. Appl. Phys. 52, 08JG04 (2013). [CrossRef]
  7. J. Piprek, S. Li, “GaN-based VCSELs: Analysis of internal device physics and performance limitations,” Proc. SPIE 7602, 760217 (2010). [CrossRef]
  8. Y. Higuchi, K. Omae, H. Matsumura, T. Mukai, “Room-temperature cw lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Expr. 1, 121102 (2008). [CrossRef]
  9. W. Nakwaski, T. Czyszanowski, R. P. Sarzala, Nitride Semiconductor Devices: Principles and Simulation, J. Piprek, ed. (Wiley, 2007).
  10. J. S. Gustavsson, J. Vukusic, J. Bengtsson, A. Larsson, “A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38(2), 203–212 (2002). [CrossRef]
  11. J. Bengtsson, J. Gustavsson, Å. Haglund, A. Larsson, A. Bachmann, K. Kashani-Shirazi, M.-C. Amann, “Diffraction loss in long-wavelength buried tunnel junction VCSELs analyzed with a hybrid coupled-cavity transfer-matrix model,” Opt. Express 16(25), 20789–20802 (2008). [CrossRef] [PubMed]
  12. T. Czyszanowski, M. Wasiak, R. P. Sarzala, W. Nakwaski, “Exactness of simplified scalar optical approaches in modeling a threshold operation of possible nitride vertical-cavity surface-emitting lasers,” Phys. Stat. Sol. A 204(10), 3562–3573 (2007). [CrossRef]
  13. R. Sarzala, T. Czyszanowski, M. Wasiak, M. Dems, L. Piskorski, W. Nakwaski, K. Panajotov, “Numerical self-consistent analysis of VCSELs,” Adv. Opt. Technol. 2012, ID 689519 (2012). [CrossRef]
  14. G. R. Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20(13), 1483–1485 (1995). [CrossRef] [PubMed]
  15. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  16. R. Butté, G. Christmann, E. Feltin, A. Castiglia, J. Levrat, G. Cosendey, A. Altoukhov, J. F. Carlin, N. Grandjean, “Room temperature polariton lasing in III-nitride microcavities: a comparison with blue GaN-based vertical cavity surface emitting lasers,” Proc. SPIE 7216, 721619 (2009). [CrossRef]
  17. S. C. Wang, T. C. Lu, H. C. Kuo, “Recent advances on CW current injection blue VCSELs,” Proc. SPIE 8276, 827607 (2012). [CrossRef]
  18. B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011). [CrossRef]
  19. M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007). [CrossRef]
  20. W. S. Tan, K. Takahashi, V. Bousquet, A. Ariyoshi, Y. Tsuda, M. Ohta, M. Kauer, “Blue-violet inner stripe laser diodes using lattice matched AlInN as current confinement layer for high power operation,” Appl. Phys. Expr. 2, 112101 (2009). [CrossRef]
  21. R. W. H. Engelmann, D. Kerps, “Leaky modes in active three-layer slab waveguides,” IEE Proc. 127(6), 330–336 (1980).
  22. D. Zhou, L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38(12), 1599–1606 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited