OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 519–524

Enhanced thermal stability of oleic-acid-capped PbS quantum dot optical fiber amplifier

Xiaolan Sun, Rong Dai, Juanjuan Chen, Wei Zhou, Tingyun Wang, Alan R. Kost, Chia-Kuang (Frank) Tsung, and Zesheng An  »View Author Affiliations


Optics Express, Vol. 22, Issue 1, pp. 519-524 (2014)
http://dx.doi.org/10.1364/OE.22.000519


View Full Text Article

Enhanced HTML    Acrobat PDF (916 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Poor thermal stability has remained a severe obstacle for practical applications of optical fiber amplifiers based on quantum dots (QDs). We demonstrate that thermal stability at elevated temperatures can be achieved by using oleic-acid-capped QDs. Optical fiber amplifiers using oleic-acid-capped QDs for the gain medium exhibited stable gain of more than 5 dB at 1550 nm between 25 °C and 50 °C that did not degrade upon cooling. In contrast, fiber amplifiers employing oleylamine-capped QDs exhibited reduced gain when heated and subsequently cooled.

© 2014 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4510) Fiber optics and optical communications : Optical communications
(160.4236) Materials : Nanomaterials

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 7, 2013
Revised Manuscript: December 9, 2013
Manuscript Accepted: December 10, 2013
Published: January 3, 2014

Citation
Xiaolan Sun, Rong Dai, Juanjuan Chen, Wei Zhou, Tingyun Wang, Alan R. Kost, Chia-Kuang (Frank) Tsung, and Zesheng An, "Enhanced thermal stability of oleic-acid-capped PbS quantum dot optical fiber amplifier," Opt. Express 22, 519-524 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-1-519


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Sukhovatkin, S. Hinds, L. Brzozowski, E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009). [CrossRef] [PubMed]
  2. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000). [CrossRef] [PubMed]
  3. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007). [CrossRef]
  4. C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008). [CrossRef]
  5. S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005). [CrossRef] [PubMed]
  6. T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009). [CrossRef]
  7. J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011). [CrossRef] [PubMed]
  8. E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005). [CrossRef]
  9. Y. Ding, R. Aviles-Espinosa, M. A. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012). [CrossRef] [PubMed]
  10. M. Matsuura, N. Calabretta, O. Raz, H. J. S. Dorren, “Multichannel wavelength conversion of 50-Gbit/s NRZ-DQPSK signals using a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B560–B566 (2011). [CrossRef] [PubMed]
  11. C. Cheng, H. Jiang, D. Ma, X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011). [CrossRef]
  12. P. R. Watekar, L. Aoxiang, J. Seongmin, and H. Won-Taek, “1537 nm emission upon 980 nm pumping in PbSe quantum dots doped optical fiber,” in OFC/NFOEC 2008. 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2008), pp. 3030–3032. [CrossRef]
  13. S. Kawanishi, T. Komukai, M. Ohmori, and H. Sakaki, “Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber,” in CLEO '07.2007 Conference on Lasers and Electro-Optics (2007), pp. 1343–1344. [CrossRef]
  14. C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26(11), 1404–1410 (2008). [CrossRef]
  15. F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18(13), 14024–14030 (2010). [CrossRef] [PubMed]
  16. X. Sun, Y. Dong, C. Li, X. Liu, G. Liu, and L. Xie, “PbSe quantum dots fiber amplifier based on sol-gel self-assembly method,” in Passive Components and Fiber-Based Devices VII, P. P. Shum, ed. (SPIE, 2011).
  17. X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, Z. An, “Optical fiber amplifiers based on PbS/CdS QDs modified by polymers,” Opt. Express 21(7), 8214–8219 (2013). [CrossRef] [PubMed]
  18. H. Guo, F. Pang, X. Zeng, T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012). [CrossRef]
  19. H. Guo, F. Pang, X. Zeng, T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013). [CrossRef]
  20. X. Ji, D. Copenhaver, C. Sichmeller, X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008). [CrossRef] [PubMed]
  21. B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009). [CrossRef] [PubMed]
  22. I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011). [CrossRef] [PubMed]
  23. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006). [CrossRef] [PubMed]
  24. S. F. Wuister, C. de Mello Donegá, A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004). [CrossRef] [PubMed]
  25. S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited